Neuroscience
-
Studies have shown that a certain dose of dexamethasone can improve the survival rate of patients with sepsis, and in sepsis associated encephalopathy (SAE), autophagy plays a regulatory role in brain function. Here, we proved for the first time that small-dose dexamethasone (SdDex) can regulate the autophagy of cerebral cortex neurons in SAE rats and plays a protective role. Cortical neurons were cultured in vitro in a septic microenvironment and a sepsis rat model was established. ⋯ Furthermore, the HdDex group exhibited the most obvious apoptosis. SdDex can regulate autophagy of cortical neurons by inhibiting the mTOR signaling pathway and plays a protective role. Brain damage induced by HdDex may be related to the activation of apoptosis.
-
Humans are more vulnerable to addiction in comparison to all other mammals, including nonhuman primates, yet there is a lack of research addressing this. This paper reviews the field of comparative addiction neuroscience, highlighting the significant inter-species variation in the mesocortical dopaminergic and other neuromodulatory systems involved in addiction. Artificial selection gives rise to significant changes in neuroanatomy, neurophysiology and behaviour as shown in certain rodent strains and other domesticated animals. ⋯ During the course of human evolution, traits crucial to our survival, expansion and domination (traits such as the ability to innovate, adapt to different environments and thrive in a civilization) have been positively selected for, yet also predispose humans to addiction. This is evident in our unique neurochemistry and receptor-drug activation potencies. Examples of these are provided as possible targets for precision medicine.
-
The dorsolateral prefrontal cortex (DLPFC) is a crucial brain region for inhibitory control, an executive function essential for behavioral self-regulation. Recently, inhibitory control has been shown to be important for endurance performance. Improvement in inhibitory control was found following transcranial direct current stimulation (tDCS) applied over the left DLPFC (L-DLPFC). ⋯ Stroop task performance was improved after Real-tDCS as demonstrated by a lower number of errors for incongruent stimuli (p=0.012). TTE was significantly longer following Real-tDCS compared to Sham-tDCS (p=0.029, 17±8 vs 15±8min), with significantly lower HR (p=0.002) and RPE (p<0.001), while no significant difference was found for PAIN (p>0.224). ∆B[La-] was significantly higher at exhaustion in Real-tDCS (p=0.040). Our findings provide preliminary evidence that tDCS with the anodal electrode over the L-DLPFC can improve both inhibitory control and endurance cycling performance in healthy individuals.
-
The activation of inflammatory cytokines following stroke leads to neuron apoptosis and microglial activation, both of which are involved in ischemic brain damages. The ubiquitin-specific protease 18 (USP18) negatively regulated the expression of inflammatory cytokines and suppresses microglial activation. This study aims to determine whether USP18 expression protects against brain damage in ischemic models of stroke. ⋯ Additionally, microglial activation was inhibited, including the suppression of the JAK/STAT pathway and the proinflammatory cytokines expression. In vitro experiments demonstrated that USP18 inhibited BV2 microglial activity and reduced the mRNA and protein levels of NF-κB, JAK1, p-JAK1, STAT1, and p-STAT1 in BV2 microglial cells. USP18 overexpression decreased ischemic brain injury through the suppression of microglial activation by negatively regulating the release of proinflammatory cytokines.
-
Previous studies reported that long-term nociceptive stimulation could result in neurovascular coupling (NVC) dysfunction in brain, but these studies were based mainly on unimodal imaging biomarkers, thus could not comprehensively reflect NVC dysfunction. We investigated the potential NVC dysfunction in chronic migraine by exploring the relationship between neuronal activity and cerebral perfusion maps. The Pearson correlation coefficients between these 2 maps were defined as the NVC biomarkers. ⋯ These brain regions were located mainly in parietal or occipital lobes and were related to visual or sensory information processing. ALFF-CBF in right SPG was positively correlated with disease history and that in right precuneus was negatively correlated with migraine persisting time. fALFF-CBF in left SMG and AG were negatively related to headache frequency and positively related to health condition and disease history. In conclusion, multi-modal MRI could be used to detect NVC dysfunction in chronic migraine patients, which is a new method to assess the impact of chronic pain on the brain.