Neuroscience
-
The activation of inflammatory cytokines following stroke leads to neuron apoptosis and microglial activation, both of which are involved in ischemic brain damages. The ubiquitin-specific protease 18 (USP18) negatively regulated the expression of inflammatory cytokines and suppresses microglial activation. This study aims to determine whether USP18 expression protects against brain damage in ischemic models of stroke. ⋯ Additionally, microglial activation was inhibited, including the suppression of the JAK/STAT pathway and the proinflammatory cytokines expression. In vitro experiments demonstrated that USP18 inhibited BV2 microglial activity and reduced the mRNA and protein levels of NF-κB, JAK1, p-JAK1, STAT1, and p-STAT1 in BV2 microglial cells. USP18 overexpression decreased ischemic brain injury through the suppression of microglial activation by negatively regulating the release of proinflammatory cytokines.
-
The dorsolateral prefrontal cortex (DLPFC) is a crucial brain region for inhibitory control, an executive function essential for behavioral self-regulation. Recently, inhibitory control has been shown to be important for endurance performance. Improvement in inhibitory control was found following transcranial direct current stimulation (tDCS) applied over the left DLPFC (L-DLPFC). ⋯ Stroop task performance was improved after Real-tDCS as demonstrated by a lower number of errors for incongruent stimuli (p=0.012). TTE was significantly longer following Real-tDCS compared to Sham-tDCS (p=0.029, 17±8 vs 15±8min), with significantly lower HR (p=0.002) and RPE (p<0.001), while no significant difference was found for PAIN (p>0.224). ∆B[La-] was significantly higher at exhaustion in Real-tDCS (p=0.040). Our findings provide preliminary evidence that tDCS with the anodal electrode over the L-DLPFC can improve both inhibitory control and endurance cycling performance in healthy individuals.
-
The current evidence suggests that aerobic fitness is associated with inhibitory control of executive functioning in children and older adults. However, the relative contributions of different neurophysiological mechanisms to this relation remain unclear and have not yet been examined in young adults. The present study aimed to compare inhibitory control between high and low-fit young adult men, and to investigate a possible mediation of fitness effects by conflict monitoring (N450 component of event-related potentials) and lateralized oxygenation difference (LOD) in the DLPFC. ⋯ In contrast, LOD was inversely correlated with Stroop interference, but did not explain the relation of aerobic fitness with behavioral performance. The present findings indicate that greater inhibitory control in high- compared to low-fit young men can be explained by more effective conflict monitoring. Moreover, young adults with left-lateralizedDLPFC oxygenation also show higher inhibitory control, but this oxygenation pattern is not influenced by aerobic fitness.
-
Previous studies reported that long-term nociceptive stimulation could result in neurovascular coupling (NVC) dysfunction in brain, but these studies were based mainly on unimodal imaging biomarkers, thus could not comprehensively reflect NVC dysfunction. We investigated the potential NVC dysfunction in chronic migraine by exploring the relationship between neuronal activity and cerebral perfusion maps. The Pearson correlation coefficients between these 2 maps were defined as the NVC biomarkers. ⋯ These brain regions were located mainly in parietal or occipital lobes and were related to visual or sensory information processing. ALFF-CBF in right SPG was positively correlated with disease history and that in right precuneus was negatively correlated with migraine persisting time. fALFF-CBF in left SMG and AG were negatively related to headache frequency and positively related to health condition and disease history. In conclusion, multi-modal MRI could be used to detect NVC dysfunction in chronic migraine patients, which is a new method to assess the impact of chronic pain on the brain.
-
Extracellular vesicles are lipid bilayer-enclosed extracellular structures. Although the term extracellular vesicles is quite inclusive, it generally refers to exosomes (<200 nm), and microvesicles (~100-1000 nm). Such vesicles are resistant to degradation and can contain proteins, lipids, and nucleic acids. ⋯ The influence that such extracellular vesicles might exert on peripheral nerve regeneration is just beginning to be investigated. In the current studies we show that muscle-derived extracellular vesicles significantly influence the anatomical accuracy of motor neuron regeneration in the rat femoral nerve. These findings suggest a basic cellular mechanism by which target end-organs could guide their own reinnervation following nerve injury.