Neuroscience
-
Diabetic neuropathic pain (DNP), an early symptom of diabetic neuropathy, involves complex mechanisms. Long non-coding RNA (lncRNA) dysregulation contributes to the pathogenesis of various human diseases. Here, we investigated the genome-wide expression patterns of lncRNAs and genes in the spinal dorsal horn of mice with streptozotocin-induced DNP. ⋯ Finally, we found 289 neighboring and 57 overlapping lncRNA-mRNA pairs, including ENSMUST00000150952-Mbp and AK081017-Usp15, which may be involved in DNP pathogenesis. Microarray data were validated through quantitative PCR of selected lncRNAs and mRNAs. These results suggest that aberrant expression of lncRNAs may contribute to the pathogenesis of DNP.
-
FKBP5 (FKBP51) is a glucocorticoid receptor (GR) binding protein, which acts as a co-chaperone of heat shock protein 90 (HSP90) and negatively regulates GR. Its association with mental disorders has been identified, but its function in disease development is largely unknown. Long-term potentiation (LTP) is a functional measurement of neuronal connection and communication, and is considered one of the major cellular mechanisms that underlies learning and memory, and is disrupted in many mental diseases. ⋯ Further investigation suggested that increased expression of GAD65, but not GAD67, accounted for this increase. Additionally, a functional GABAergic alteration was observed in the form of increased mIPSC frequency in the KO hippocampus, indicating an increase in presynaptic GABA release. Our findings uncover a novel role for Fkbp5 in neuronal synaptic plasticity and highlight the value of Fkbp5 KO as a model for studying its role in neurological function and disease development.
-
Here we report that the low-voltage-dependent T-type calcium (Ca2+) channel Cav3.2, encoded by the CACNA1H gene, regulates neuronal differentiation during early embryonic brain development through activating caspase-3. At the onset of neuronal differentiation, neural progenitor cells exhibited spontaneous Ca2+ activity. This activity strongly correlated with the upregulation of CACNA1H mRNA. ⋯ In contrast, when CACNA1H was overexpressed, increased neurogenesis was detected. Cortical slices from Cacna1h knockout mice showed decreased spontaneous Ca2+ activity, a significantly lower protein level of cleaved caspase-3, and microanatomical abnormalities in the subventricular/ventricular and cortical plate zones when compared to their respective embryonic controls. In summary, we demonstrate a novel relationship between Cav3.2 and caspase-3 signaling that affects neurogenesis in the developing brain.
-
Abnormalities of the autophagy-lysosomal pathway (ALP) have been implicated in the pathology of Alzheimer's disease (AD). Activation of TFEB (transcription factor EB), a master regulator of the ALP, leads to ALP facilitation. The present study sought to clarify whether TFEB-mediated ALP facilitation influences the process of amyloid β-protein (Aβ) generation in neurons. ⋯ Inhibition of proteasomes, but not lysosomes, markedly increased β-CTF levels in β-CTF-expressing neurons. These results collectively indicate that TFEB modulates Aβ production not only by increasing α-secretase processing of APP through ADAM10 upregulation but also by augmenting β-CTF levels possibly via altered proteasome-mediated catabolism. Thus, TFEB-mediated ALP enhancement appears to have dual, but opposite, effects on Aβ production in neurons.
-
The facial nerve is necessary for our ability to eat, speak, and make facial expressions. Both the axons and cell bodies of the facial nerve undergo a complex embryonic developmental pattern involving migration of the cell bodies caudally and tangentially through rhombomeres, and simultaneously the axons projecting to exit the hindbrain to form the facial nerve. Our goal in this study was to test the functions of the chemorepulsive receptors Robo1 and Robo2 in facial neuron migration and axon projection by analyzing genetically marked motor neurons in double-mutant mouse embryos through the migration time course, E10.0-E13.5. ⋯ Surprisingly, some facial neurons had multiple axons exiting and projecting into the floor plate. At the same time, a subset of mutant facial cell bodies failed to migrate caudally, and instead either streamed dorsally toward the exit point or shifted into the floor plate. We conclude that Robo1 and Robo2 have redundant functions to guide multiple aspects of the complex cell migration of the facial nucleus, as well as regulating axon trajectories and suppressing formation of ectopic axons.