Neuroscience
-
The Confidence of a decision could be considered as the internal estimate of decision accuracy. This variable has been studied extensively by different types of recording data such as behavioral, electroencephalography (EEG), eye and electrophysiology data. Although the value of the reported confidence is considered as one of the most important parameters in decision making, the confidence reporting phase might be considered as a restrictive element in investigating the decision process. ⋯ As a matter of fact, our proposed EEG and eye data properties are capable of recognizing more than nine distinct levels of confidence. Among our proposed features, the latency of the pupil maximum diameter through the stimulus presentation was established to be the most associated one to the confidence levels. Through the time-dependent analysis of these features, we recognized the time interval of 500-600 ms after the stimulus onset as an important time in correlating features to the confidence levels.
-
The superior temporal sulcus (STS) encompasses a complex set of regions involved in a wide range of cognitive functions. To understand its functional properties, neuromodulation approaches such brain stimulation or neurofeedback can be used. We investigated whether the posterior STS (pSTS), a core region in the face perception and imagery network, could be specifically identified based on the presence of dynamic facial expressions (and not just on simple motion or static face signals), and probed with neurofeedback. ⋯ Our results provide evidence that a facial expression-selective cluster in pSTS can be identified and may represent a suitable target for neurofeedback approaches, aiming at social and emotional cognition. These findings highlight the presence of a highly selective region in STS encoding dynamic aspects of facial expressions. Future studies should elucidate its role as a mechanistic target for neurofeedback strategies in clinical disorders of social cognition such as autism.
-
Repeatedly pairing a brief train of vagus nerve stimulation (VNS) with an auditory stimulus drives reorganization of primary auditory cortex (A1), and the magnitude of this VNS-dependent plasticity is dependent on the stimulation parameters, including intensity and pulse rate. However, there is currently little data to guide the selection of VNS train durations, an easily adjusted parameter that could influence the effect of VNS-based therapies. Here, we tested the effect of varying the duration of the VNS train on the extent of VNS-dependent cortical plasticity. ⋯ Trains lasting 0.125 or 2.0 s failed to alter A1 responses, indicating that both shorter and longer stimulation durations are less effective at enhancing plasticity. A second set of experiments evaluating the effect of delivering 4 or 64 pulses in a fixed 0.5 s VNS train duration paired with tone presentation reveal that both slower and faster stimulation rates are less effective at enhancing plasticity. We incorporated these results with previous findings describing the effect of stimulation parameters on VNS-dependent plasticity and activation of neuromodulatory networks to generate a model of synaptic activation by VNS.
-
Early brain injury (EBI) mainly leads to the poor outcome of subarachnoid hemorrhage (SAH), with which inflammation is closely associated. It was reported that triggering receptor expressed on myeloid cells-1 (TREM-1), a critical inflammatory amplifier, increased in cerebrospinal fluid of SAH patients in our recent research. This study was conducted to examine the effects of TREM-1 inhibition on EBI after experimental SAH (eSAH). ⋯ The results showed that TREM-1 was induced in brain after eSAH. Both high dose (3.5 mg/kg) and low dose (1.0 mg/kg) of Lp17 significantly inhibited the induction of TREM-1, but only high dose of LP17 improved neuroscore, brain edema, and BBB disruption which are associated with downregulation of p38MAPK/MMP-9 and subsequent preservation of ZO-1. Overall, the current study provides new evidence that TREM-1 may participate in the pathogenesis of SAH-induced EBI via promoting p38MAPK/MMP-9 activation and ZO-1 degradation, while TREM-1 inhibition attenuated the EBI severity obviously, providing a novel approach for the treatment of EBI.
-
Persistent demyelination has been implicated in axon damage and functional deficits underlying neurodegenerative diseases such as multiple sclerosis. The cuprizone diet model of demyelination allows for the investigation of mechanisms underlying timed and reproducible demyelination and remyelination. However, spontaneous oligodendrocyte (OL) progenitor (OPC) proliferation, OPC differentiation, and axon remyelination during cuprizone diet may convolute the understanding of remyelinating events. ⋯ There was minimal change in CAP amplitude between groups, however, a significant decrease in conduction velocity of the slower, non-myelinated CAP component was observed in the rapamycin group relative to the non-rapamycin group. During remyelination, rapamycin groups showed a significant decrease in OPC proliferation and mature OLs, suggesting a delay in OPC differentiation kinetics. In conclusion, we question the use of rapamycin to produce consistent demyelination as rapamycin increased inflammation and axonal damage, without affecting myelination.