Neuroscience
-
To foster performance across all levels of sports practice, physical training has been integrated with various mental training practices. Recently, an integrative approach to neurocognitive enhancement tried to combine the strengths of mental practices (i.e. mindfulness) and of training with neurofeedback devices. Based on previous validation studies showing the effect of a combined mindfulness-neurofeedback program on neurocognitive efficiency and stress/anxiety levels, we aimed at testing the feasibility and potential of that intensive combined program for improving psychological well-being and attention regulation in sport contexts. 50 participants (sportspeople and volunteers not regularly involved in sports) were divided into groups undergoing experimental and active control training programs. ⋯ We have also observed a general reduction of perceived stress and increased ability to keep a non-evaluative stance. Findings extend available observations on cognitive and neural effects of combined mindfulness-neurofeedback practice by showing that it is possible to observe training effects even after a limited period of practice among sportspeople. Such early training effects might mirror optimized implicit learning curves due to peculiar sensitivity to bodily signals and awareness.
-
Neuroinflammation is considered to be a critical component in the pathological process after intracerebral hemorrhage (ICH). Microglia are the foremost and earliest inflammatory cells participating in the pathological process of ICH. AdipoRon is the agonist of AdipoR1 (Adiponectin receptor 1), which enhances P-AMPK (phosphorylated AMP-activated protein kinase) activation. ⋯ The in vitro experiment showed that AdipoRon not only directly inhibited neuronal ROS overproduction, but also indirectly decreased the neuronal death in a transwell co-culture system. In summary, AdipoRon protects against ICH induced injury through promoting M2a microglia polarization and reducing neuronal death. These effects of AdipoRon rely on the activation of AdipoR1-AMPK signaling pathway.
-
Visual attention enables us to prioritise behaviourally relevant visual information while ignoring distraction. The neural networks supporting attention are modulated by two catecholamines, dopamine and noradrenaline. The current study investigated the effects of single nucleotide polymorphisms in two catecholaminergic genes - COMT (Val158Met) and DBH (444 G/A) - on individual differences in attention functions. ⋯ Furthermore, we demonstrated a significant association between COMT genotype status and effective threshold of visual perception in attentional selection as estimated based on the TVA task performance. No other group differences in attention function were found with respect to the studied genotypes. Overall, our findings provide novel experimental evidence that: (i) dopaminergic and noradrenergic genotypes have dissociable effects on visual attention; (ii) either insufficient or excessive catecholaminergic activity may have equally detrimental effects on sustained attention.
-
Hippocampal oscillations, particularly theta (6-12 Hz) and gamma (30-90 Hz) frequency bands, play an important role in several cognitive functions. Theta and gamma oscillations show cross-frequency coupling (CFC), wherein the phase of theta rhythm modulates the amplitude of the gamma oscillation, and this CFC is believed to reflect cell assembly dynamics in cognitive processes. Previous studies have reported that CFC strength correlates with the learning process. ⋯ The enhanced coupling between theta and high-gamma oscillations (60-90 Hz) changed during the late stage of learning. In contrast, the coupling between theta and low-gamma oscillations (30-60 Hz) did not show any changes during learning. These results suggest that the coupling between theta and gamma bands occurs during rule learning and that high- and low-gamma bands play different roles in rule switching.
-
Small-for-gestational age (SGA) human newborns have an increased risk of hyperphagia and obesity, as well as a spectrum of neurologic and neurobehavioral abnormalities. We have shown that the SGA hypothalamic (appetite regulatory site) neuroprogenitor cells (NPCs) exhibit reduced proliferation and neuronal differentiation. DNA methylation (DNA methyltransferase; DNMT1) regulates neurogenesis by maintaining NPC proliferation and suppressing premature differentiation. ⋯ In vivo data replicated these findings. In SGA offspring, impaired neurogenesis is epigenetically mediated, in part, via reduction in DNMT1 expression and suppression of Hes1 resulting in NPC differentiation. It is likely that the maturation of regions beyond the hypothalamus (e.g., cerebral cortex, hippocampus) may be impacted, contributing to poor cognitive and neurobehavioral competency in SGA offspring.