Neuroscience
-
Ghrelin is an important orexigenic brain-gut hormone that regulates feeding, metabolism and glucose homeostasis in human and rodents at multiple levels. Ghrelin functions by binding to its receptor, the growth hormone secretagogue receptor 1a (GHS-R1a), which is widely expressed both inside and outside of the brain. Both acute and chronic calorie restrictions (CRs) were reported to increase endogenous ghrelin levels and lead to beneficial effects on brain functions, including anti-anxiety effects, anti-depressive effects, and memory improvement. ⋯ This effect was abolished by a GHS-R1a antagonist, suggesting a GHS-R1a dependent mechanism. Ad-libitum refeeding masked behavioral responses induced by acute CR in both Ghsr-/- and Ghsr+/+ mice. Altogether, our findings indicate that acute and chronic CRs mitigate anxiety- and despair-like behaviors with different physiological mechanisms, with the former being dependent on endogenous ghrelin release and GHS-R1a signaling, while the latter may not be.
-
Neuroglobin (Ngb) is a REST/NRSF-regulated protein, active in reactive oxygen species detoxification and cytochrome c inhibition, which provides a beneficial outcome in pathologies as Alzheimer's disease and strokes. Considering that oxidative stress and cell death are typical hallmarks of amyotrophic lateral sclerosis (ALS), we sought to explore Ngb's involvement along this disease progression. Ngb transcription was detected to be two-fold down-regulated in late-stage SODG93A mice, similarly as previously described for Alzheimer disease. ⋯ To look further into the link between Ngb and ALS, we generated a double mutant Ngb-/-SODG93A mouse model, which shows an earlier onset and severity of hind limb deficits. Mitochondria derived thereof showed an altered mean volume, granularity and Ca2+-induced swelling as compared to NgbWt/WtSODG93A mice. These results indicate Ngb to be involved in and affected by the SOD1G93A pathology, which could in part be attributed to its role in halting destabilizing events of mitochondrial swelling and phenotypes.