Neuroscience
-
Nicotinic acetylcholine receptors of α7 subtype (α7 nAChRs) are involved in regulating cognition, inflammation and cell survival. Neuroinflammation is accompanied by the decrease of α7 nAChRs in the brain and impairment of memory. We show here that α7-/- mice possess pro-inflammatory phenotype and demonstrate worse episodic memory compared to wild-type mice. ⋯ It is concluded that MSCs, injected intravenously, penetrate the brain of α7-/- mice and persist there for at least 2 weeks. They improve episodic memory of mice and make their mitochondria more resistant to apoptogenic influence. One of the soluble factors responsible for the memory improvement is IL-6.
-
Repetitive mild traumatic brain injury (RmTBI) is a prevalent and costly head injury particularly among adolescents. These injuries may result in long-term consequences, especially during this critical period of development. Insomnia and sleeping difficulties are frequently reported following RmTBI and greatly impair recovery. ⋯ Finally, although both MSG and RmTBI alone produced attenuated circadian amplitudes of activity and body temperature, exacerbated deficits were not identified in animals that received MSG and RmTBI. In sum, both MSG and RmTBI can alter behavior, circadian rhythm amplitude, SCN morphology, and gene expression independently, but the effects do not appear to be additive. Specific damage in the hypothalamus and SCN should be considered when patients experience sleeping problems following RmTBI, as this may improve therapeutic strategies.
-
Randomized Controlled Trial
Effects of Transcranial Static Magnetic Stimulation on Motor Cortex Evaluated by Different TMS Waveforms and Current Directions.
Transcranial static magnetic stimulation (tSMS) modulates cortical excitability probably by interacting with the GABA-glutamate intracortical balance. Different transcranial magnetic stimulation (TMS) waveforms probe distinct GABA-mediated cortical inhibition networks. The goal of the present work is to further characterize tSMS-induced changes in motor cortex reactivity and inhibition-excitation (I/E) balance. ⋯ MEP amplitude increased compared to sham with monoAP TMS, with no clear changes in general intracortical I/E balance. Biphasic TMS was not able to capture any effects of tSMS. The results show that the effects of tSMS on cortical excitability and inhibition involve specific interneuron circuits that are selectively activated by monoPA TMS.
-
Randomized Controlled Trial
Fronto-Parietal Brain Areas Contribute to the Online Control of Posture during a Continuous Balance Task.
Neuroimaging studies have provided evidence for the involvement of frontal and parietal cortices in postural control. However, the specific role of these brain areas for postural control remains to be known. Here, we investigated the effects of disruptive transcranial magnetic stimulation (TMS) over supplementary motor areas (SMA) during challenging continuous balance task in healthy young adults. ⋯ Importantly, cTBS over SMA compared to sham stimulation altered EEG power within the identified fronto-parietal regions. These findings suggest that the changes in activation within distant fronto-parietal brain areas following cTBS over SMA contributed to the altered postural behavior. Our study confirms a critical role of AC, CG, and both PPC regions in calibrating online postural responses during a challenging continuous balance task.
-
Parkinson's disease (PD) is a common movement disorder. Alpha-synuclein (α-synuclein) plays a critical role in PD. In this study, we evaluated the level of central nervous system (CNS)-derived exosomal α-synuclein in serum, which may be regarded as a specific peripheral biomarker for PD. ⋯ Therefore, CNS-derived exosomal α-synuclein in the serum may be regarded as a biomarker to identify PD from ET and HC in the early stage. It may also be used to identify different motor types in PD. The pathogenesis of PD in different motor types may be different, which needs further research.