Neuroscience
-
Coagulation factor XII (FXII) is synthesized in the liver and secreted into the circulation, where it initiates the contact activation system. Although typically thought to be restricted to the circulation, FXII protein has been found in the brain of Alzheimer's disease (AD) and multiple sclerosis patients. Moreover, activation of the contact system has been detected in the cerebrospinal fluid of these patients as well as in the brain of healthy and AD individuals. ⋯ We show that a recombinant version of this shorter FXII protein is activated by plasma kallikrein, reciprocally activates prekallikrein, and converts pro-hepatocyte growth factor (HGF) to active HGF in vitro. HGF-Met signaling plays a role in neuronal development and survival, and its dysregulation has been implicated in neurodevelopmental disorders and neurodegeneration. Taken together, our results show that a short isoform of FXII mRNA is expressed in the brain and raise the possibility that brain-derived FXII may be involved in HGF-Met signaling in neurons.
-
Ketogenic diet is reported to protect against cognitive decline, drug-resistant epilepsy, Alzheimer's Disease, damaging effect of ischemic stroke and many neurological diseases. Despite mounting evidence that this dietary treatment works, the exact mechanism of its protective activity is largely unknown. Ketogenic diet acts systemically, not only changing GABA signaling in neurons, but also influencing the reliance on mitochondrial respiration, known to be disrupted in many neurological diseases. ⋯ In the brain astrocytes are believed to be the sole neural cells capable of fatty oxidation. Here we try to explain that not exclusively neurons, but also morphological changes of astroglia and/or microglia due to different metabolic state are important for the mechanism underlying the protective role of ketogenic diet. By quantifying different parameters describing cellular morphology like ramification index or fractal dimension and using Principal Component Analysis to discover the regularities between them, we demonstrate that in normal adult rat brain, ketogenic diet itself is able to change glial morphology, indicating an important role of these underappreciated cells in the brain metabolism.
-
People commonly synchronize taps to rhythmic sounds and can continue tapping after the sounds stop, indicating that time intervals between sounds can be internalized. Here, we investigate what happens in the brain after simply listening to auditory beats in order to understand more about the automatic internalization of temporal intervals without tapping. Electroencephalograms were recorded while musicians attended to accelerating, decelerating, or steady click sequences. ⋯ In contrast, physical beats elicited P2 responses and early beta suppressions, likely reflecting a combination of stimulus-related processing and temporal prediction. These results suggest that the activities observed after the silent beat were not produced via sustained entrainment after the physical beats, but via automatically-formed expectation for an additional beat. Therefore, beta modulations may be generated endogenously by expectation violation, while P3a amplitudes may relate to strength of expectation, with acceleration endings causing the strongest expectations for sequence continuation.
-
Orofacial and somatic disgust reactions are observed in rats following intraoral infusion of not only bitter quinine (innate disgust) but also sweet saccharin previously paired with illness (learned disgust). It remains unclear, however, whether these innate and learned disgust reactions share a common neural basis and which brain regions, if any, host it. In addition, there is no established method to genetically access neurons whose firing is associated with disgust (disgust-associated neurons). ⋯ In addition, TRAP following quinine infusion (Quinine-TRAP) resulted in significantly more YFP-positive neurons in the IPAC, compared to TRAP following water infusion. A significant number of the YFP-positive neurons following Quinine-TRAP were co-labeled with Arc following the second quinine infusion, confirming that Quinine-TRAP preferentially labeled quinine-activated neurons in the IPAC. Our results suggest that the IPAC activity is associated with both innate and learned disgust and that disgust-associated neurons in the IPAC are genetically accessible by TRAP.
-
One deficit associated with schizophrenia (SZ) is the reduced ability to distinguish self-caused sensations from those due to external sources. This reduced sense of agency (SoA, subjective awareness of control over one's actions) is hypothesized to result from a diminished utilization of internal monitoring signals of self-movement (i.e., efference copy) which subsequently impairs forming and utilizing sensory prediction errors (differences between the predicted and actual sensory consequences resulting from movement). Another important function of these internal monitoring signals is the facilitation of higher-order mechanisms related to motor learning and control. ⋯ Although adaptation was similar for SZP and controls, the extent of generalization was significantly less for SZP; movement trajectories made by patients to the furthest untrained target (135o) before and after adaptation were largely indistinguishable. Interestingly, deficits in generalization were correlated with positive symptoms of psychosis in SZP (e.g., hallucinations). Generalization was also associated with measures of SoA across both SZP and HC, emphasizing the role action awareness plays in motor behavior, and suggesting that misattributing agency, even in HC, manifests in abnormal motor performance.