Neuroscience
-
Temporal lobe epilepsy is triggered by an initial insult, such as status epilepticus, that initiates the process of epilepsy development. Heat shock protein 70 (Hsp70) is a ubiquitously expressed molecular chaperone, involved in the inflammatory response that is upregulated after status epilepticus. Hsp70 has been described as an endogenous intracellular ligand of Toll-like receptor 4. ⋯ No colocalization with the astrocytic marker GFAP or the microglia marker Iba1 was found. The intense neuronal Hsp70 upregulation during the early post-insult phase might contribute to the onset of excessive inflammation triggering molecular and cellular reorganization and generation of a hyperexcitable epileptic network. Therefore, development of multi-targeting strategies aiming at prevention of epileptogenesis should consider Hsp70 modulation in the early days following an epileptogenic insult.
-
Disruption of the blood-brain barrier (BBB) and subsequent neurological deficits are the most severe consequence of intracerebral hemorrhage (ICH). Minocycline has been wildly used clinically as a neurological protective agent in clinical practice. However, the underlying mechanisms by which minocycline functions remain unclear. ⋯ Moreover, minocycline decreased the production of inflammatory mediators including TNF, IL-6, and MMP-9, by microglia. Minocycline treatment decreased DKK1 expression but increased Wnt1, β-catenin and Occludin, a phenomenon mimicked by DKK1 silencing. These data suggest that minocycline improves the consequences of ICH by preserving BBB integrity and attenuating neurologic deficits in a DKK1-related manner that involves enhancement of the Wnt1-β-catenin activity.
-
Understanding brain processing mechanisms from the perception of speech sounds to high-level semantic processing is vital for effective human-robot communication. In this study, 128-channel electroencephalograph (EEG) signals were recorded when subjects were listening to real and pseudowords in Mandarin. By using an EEG source reconstruction method and a sliding-window Granger causality analysis, we analyzed the dynamic brain connectivity patterns. ⋯ This may be related to semantic processing and integration. The involvement of both bottom-up input and top-down modulation in real word processing may support the previously proposed TRACE model. In sum, the findings of this study suggest that representations of speech involve dynamic interactions among distributed brain regions that communicate through time-specific functional networks.
-
The striatum mediates habit formation and reward association. The striatum can be divided into the patch and matrix compartment, which are two distinct regions that sub-serve different aspects of behavior. The patch compartment may mediate reward-related behaviors, while the matrix compartment may mediate adaptive motor functions. ⋯ Our data showed that patch compartment lesions in the dorsolateral striatum reduced the reinstatement of sucrose self-administration after sucrose devaluation, indicating that destruction of this region prevented the development of habitual behavior. Additionally, in animals with patch compartment lesions in the DLS that did not develop habitual behavior, activation of the dorsolateral striatum and sensorimotor cortex was diminished, while activity in the dorsomedial striatum and prefrontal cortex was increased, suggesting less engagement of regions that mediate habitual behaviors and heightened engagement of regions that mediate goal-directed behaviors occurs with reduced habit formation. These data indicate that the dorsolateral patch compartment may mediate habit formation by altering information flow through basal ganglia circuits.
-
Exposure to commonly used anesthetics is associated with widespread neuroapoptosis in neonatal animals. Vulnerability of developing hippocampal dentate gyrus granule cells to anesthetic neurotoxicity peaks approximately 2 weeks after cell birth, as measured by bromodeoxyuridine birth dating, regardless of the age of the animal. The present study examined whether the vulnerable window can be further characterized by utilizing a transgenic approach. ⋯ Apoptotic EGFP- granule cells more frequently expressed the immature neuronal marker calretinin (75.4% vs 45.0%, P < 0.001) and less frequently the late progenitor marker NeuroD1 (21.9% vs 87.9%, P < 0.001) than EGFP+ granule cells. Although EGFP- granule cells were more mature in immunostaining than EGFP+ granule cells, their electrophysiological properties partially overlapped in terms of input resistance, resting membrane potential and action potential amplitude. Our results revealed the POMC stage, when GABA acts as an excitatory neurotransmitter, only partly captures susceptibility to anesthetic neurotoxicity, suggesting the vulnerable window of anesthesia-induced neuroapoptosis extends from the end of POMC+ stage to the post-POMC+ stage when depolarizing glutamatergic inputs emerge.