Neuroscience
-
Schizophrenia has prominent functional dysconnectivity, especially in the prefrontal cortex (PFC). However, it is unclear whether in the same group of patients with schizophrenia, PFC functional dysconnectivity appears in an organized manner or is stochastically located in different subregions. ⋯ In addition, the four categories of rsFC showed distinct cognitive engagement patterns. Our findings suggest that PFC subregions have specific functional dysconnectivity patterns in schizophrenia and may reflect heterogeneous symptoms and cognitive deficits in schizophrenia.
-
Parental care is widespread in the animal kingdom, but for many species, provisioning energetic resources must be balanced with trade-offs between self-promoting and offspring-promoting behaviors. However, little is known about the neural mechanisms underlying these motivational decisions. Mouthbrooding is an extreme form of parental care most common in fishes that provides an ideal opportunity to examine which brain regions are involved in parenting and energetics. ⋯ Placement of each of the 16 examined nuclei into these functional categories was supported by node by node comparisons, co-activity networks, hierarchical clustering, and discriminant function analysis. These results reveal which brain regions are involved in parental care and food intake in a species where provisioning is skewed towards the offspring when parental feeding is not possible. This study provides support for both distinct and shared circuitry involved in regulation of maternal care, food intake, and energy balance, and helps put the extreme parental case of mouthbrooding into a comparative and evolutionary context.
-
The present study was performed to determine neuronal loci and individual molecular mechanisms responsible for remifentanil-induced hyperalgesia. The effect of methylnaltrexone (MNX) on remifentanil-induced behavioral hyperalgesia was assessed to distinguish contributions of the peripheral and/or central nervous system to remifentanil-induced hyperalgesia. Phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) in the dorsal root ganglion (DRG) neurons after remifentanil infusion, and the effect of a p38MAPK inhibitor on remifentanil-induced hyperalgesia were analyzed to investigate involvement of p38MAPK in the peripheral mechanisms of remifentanil-induced hyperalgesia. ⋯ Prodynorphin expression increased in the spinal cord, and a BK2 antagonist inhibited hyperalgesia during the late post-infusion period. Remifentanil-induced exacerbation of incisional hyperalgesia was inhibited by MNX and the BK2 antagonist. The present study demonstrated that remifentanil activates peripheral and spinal neurons to promote chronologically distinctive hyperalgesia. p38MAPK phosphorylation in the DRG neuron leads to peripherally-driven hyperalgesia during the early post-infusion period, while spinal dynorphin-bradykinin signaling promotes hyperalgesia during the late post-infusion period.
-
Training of a musical skill is known to produce a distributed neural representation of the ability to perceive music and perform musical tasks. In the present study we tested the hypothesis that the audiovisual perception of music involves a wider activation of multimodal sensory and sensorimotor structures in the brain, including those containing mirror neurons. We mapped the activation of brain areas during passive listening and viewing of the first 40 s of "Ode to Joy" being played on the piano by an expert pianist. ⋯ A visual stimulus contrast focusing on the visual motion percept of moving fingers on piano keys revealed selective bilateral activation of a locus corresponding to the V5/MT area, which was significantly more pronounced in trained subjects and showed partial linear dependence on the duration of training on the left side. Quantitative analysis of individual brain volumes confirmed a significantly greater and wider spread of activation in trained compared to untrained subjects. These findings support the view that audiovisual perception of music and musical gestures in trained musicians involves an expanded and widely distributed neural representation formed due to experience-dependent plasticity.
-
Leukemia inhibitory factor (LIF) has been shown to be involved in myelination. The present study investigated whether LIF plays a significant role in the formation of stress adaptation using stress-adaptive and -maladaptive mice, and also attempted to confirm whether there was any difference in myelination between these animal models. A single exposure to restraint stress for 1 h induced a decrease in head-dipping behavior in the hole-board test. ⋯ On the other hand, major myelin proteins including myelin-associated glycoprotein and myelin basic protein, as well as mature oligodendrocytes, were decreased in the hippocampus of stress-maladaptive, but not stress-adaptive, mice. Furthermore, while the levels of phosphorylated-extracellular signal-regulated kinase (p-ERK) were increased in the hippocampus of stress-adaptive, this change did not occur in stress-maladaptive mice. Taken together, the present findings suggest that LIF, which may be derived from activated astrocytes, plays a critical role in the maintenance of hippocampal myelination via an ERK signaling pathway, and contributes to the development of stress adaptation.