Neuroscience
-
Glutamine is an astroglia-derived precursor of the neurotransmitter glutamate, and its astroglia-to-neuron transfer is controlled by distinct glutamine transporters on the astrocytic and neuronal sites. In this study, we focused on the role of astrocytic glutamine efflux-mediating system N transporter SN1 in the maintenance of glutamatergic neurotransmission by analyzing the electrophysiological parameters ex vivo in the brain slices from control mice and mice in which vivo-morpholino technique was used to diminish SN1 protein. The glutamatergic transmission was characterized by electrophysiological recordings, ultrastructure of neuron terminals, and determination of proteins related to glutamate synaptic transmission: synaptophysin, synaptotagmin, and vit1A. ⋯ SN1 depletion resulted in a reduction of field potentials (FPs), unaltered frequency of spontaneous and miniature excitatory postsynaptic currents (sEPSCs/mEPSCs), and presented a tendency towards a decrease of long-term potentiation (LTP). Ultrastructurally, preserved number of synaptic vesicles, primarily localized centrally of the cell body, correlates with unchanged levels of synaptic proteins. Collectively, the study indicates that glutamatergic transmission proceeds relatively independently of the SN1 - mediated glutamine transfer to the synapse.
-
Disruptions in the gene encoding methyl-CpG binding protein 2 (MECP2) underlie complex neurodevelopmental disorders including Rett Syndrome (RTT), MECP2 duplication disorder, intellectual disabilities, and autism. Significant progress has been made on the molecular and cellular basis of MECP2-related disorders providing a new framework for understanding how altered epigenetic landscape can derail the formation and refinement of neuronal circuits in early postnatal life and proper neurological function. This review will summarize selected major findings from the past years and particularly highlight the integrated and multidisciplinary work done at eight NIH-funded Intellectual and Developmental Disabilities Research Centers (IDDRC) across the US. Finally, we will outline a path forward with identification of reliable biomarkers and outcome measures, longitudinal preclinical and clinical studies, reproducibility of results across centers as a synergistic effort to decode and treat the pathogenesis of the complex MeCP2 disorders.
-
The UBE3A gene is part of the chromosome 15q11-q13 region that is frequently deleted or duplicated, leading to several neurodevelopmental disorders (NDD). Angelman syndrome (AS) is caused by the absence of functional maternally derived UBE3A protein, while the paternal UBE3A gene is present but silenced specifically in neurons. Patients with AS present with severe neurodevelopmental delay, with pronounced motor deficits, absence of speech, intellectual disability, epilepsy, and sleep problems. ⋯ Inducible AS mouse models have helped to identify the critical treatment windows for the behavioral and physiological phenotypes. Additionally, AS mouse models indicate an important role for the predominantly nuclear UBE3A isoform in generating the characteristic AS pathology. Last, but not least, the AS mice have been crucial in guiding Ube3a gene reactivation treatments, which present a very promising therapy to treat AS.
-
Review
Neurobiological mechanisms of autism spectrum disorder and epilepsy, insights from animal models.
Autism Spectrum Disorder (ASD) and epilepsy are two neurodevelopmental disorders that have a high comorbidity rate, suggesting that a common neurodevelopmental mechanism exists. However, to date there is no conclusive way to predict whether a child will develop either syndrome or both and to what degree associated phenotypes will be affected. Failure to consistently identify predictive patterns of ASD and/or epilepsy diagnosis stems from the fact that they are etiologically heterogeneous conditions and research into their neuropathological mechanisms becomes challenging. ⋯ They also provide invaluable preclinical tools that can be used to test therapeutic approaches. In this review, we first summarize the methods for validating mouse models of ASD and epilepsy. Second, we present the current models validated for the comorbidity and finally, we recapitulate the common pathomechanisms identified in these models with special emphasis on synaptic plasticity.
-
Autism Spectrum Disorders (ASD) are characterized by heterogeneity both in their presentation and their genetic aetiology. In order to discover points of convergence common to different cases of ASD, attempts were made to identify the biological pathways genes associated with ASD contribute to. Many of these genes were found to play a role in neuronal and synaptic development and function. ⋯ This overlap in the phenotypes associated with these mouse models likely arises from the molecular interaction between the protein products of FMR1, CYFIP1, and NLG3. A number of other proteins linked to ASD are also likely to participate in these pathways, resulting in further downstream effects. Overall, a synaptic pathway centered around FMR1, CYFIP1, and NLG3 is likely to contribute to the phenotypes associated with structural and physiological plasticity characteristic of ASD.