Neuroscience
-
Genetic neurodevelopmental disorders - that often include epilepsy as part of their phenotype - are a heterogeneous and clinically challenging spectrum of disorders in children. Although seizures often contribute significantly to morbidity in these affected populations, the mechanisms of epileptogenesis in these conditions remain poorly understood. Different model systems have been developed to aid in unraveling these mechanisms, which include a number of specific mutant mouse lines which genocopy specific general types of mutations present in patients. ⋯ In addition, these models play a role in advancing our understanding of these epileptic processes and developing preclinical therapeutics. The concordance of seizure phenotypes - in a select group of rare, genetic, neurodevelopmental disorders and epileptic encephalopathies - found between human patients and their model counterparts will be summarized. This review aims to assess whether models of Rett syndrome, CDKL5 deficiency disorder, Fragile-X syndrome, Dravet syndrome, and Ohtahara syndrome phenocopy the seizures seen in human patients.
-
Prenatal viral/bacterial infections are considered risk factors for autism spectrum disorders (ASD) and rodent models of maternal immune activation (MIA) have been developed and extensively used in preclinical studies. Poly inosinic-cytidylic acid (Poly I:C) was injected in C57BL6/J dams to mimic a viral infection on gestational day 12.5; the experimental design includes 10/12 litters in each treatment group and data were analysed always considering the litter-effect; neonatal (spontaneous motor behaviour and ultrasonic vocalizations) and adult [open field, marble burying, social approach, fear conditioning, prepulse inhibition (PPI)] offspring of both sexes were tested. In vivo magnetic resonance imaging/spectroscopy (MRI-MRS) and high-performance liquid chromatography (HPLC) to quantify both aminoacid and/or neurotransmitter concentration in cortical and striatal regions were also carried out. ⋯ As a whole prenatal Poly I:C induced relevant long-term alterations in explorative-stereotyped motor responses and in sensory gating, sparing cognitive and social competences. When systematically assessing differences between male and female siblings within each litter, no significant sex differences were evident except for increased variability of four aminoacid levels in male brains. As a whole, prenatal Poly I:C paradigms appear to be a useful tool to investigate the profound and translationally-relevant effects of developmental immune activation on brain and behavioural development, not necessarily recapitulating the full ASD symptomatology.
-
Alterations in somatosensory (touch and pain) behaviors are highly prevalent among people with autism spectrum disorders (ASDs). However, the neural mechanisms underlying abnormal touch and pain-related behaviors in ASDs and how altered somatosensory reactivity might contribute to ASD pathogenesis has not been well studied. Here, we provide a brief review of somatosensory alterations observed in people with ASDs and recent evidence from animal models that implicates peripheral neurons as a locus of dysfunction for somatosensory abnormalities in ASDs. Lastly, we describe current efforts to understand how altered peripheral sensory neuron dysfunction may impact brain development and complex behaviors in ASD models, and whether targeting peripheral somatosensory neurons to improve their function might also improve related ASD phenotypes.
-
Neurodevelopmental disorders (NDDs) caused by aberrant brain growth and development are life-long, debilitating illnesses that markedly impair the quality of life. Animal models are a valuable tool for studying NDD pathobiology and therapies. ⋯ Here, we summarize experimental models of NDDs in zebrafish and highlight the growing translational significance of zebrafish NDD-related phenotypes. We also emphasize the need in further development of zebrafish models of NDDs to improve our understanding of their pathogenesis and therapeutic treatments.
-
Two major processes tightly regulate protein synthesis, the initiation of mRNA translation and elongation phase that mediates the movement of ribosomes along the mRNA. The elongation phase is a high energy-consuming process, and is mainly regulated by the eukaryotic elongation factor 2 kinase (eEF2K) activity that phosphorylates and inhibits eEF2, the only known substrate of the kinase. eEF2K activity is closely regulated by several signaling pathways because the translation elongation phase strongly influences the cellular energy demand and can change the expression of specific proteins in different tissues. An increasing number of recent findings link eEF2k over activation to an array of human diseases, such as atherosclerosis, pulmonary arterial hypertension, progression of solid tumors, and some major neurological disorders. ⋯ Therefore, it is possible to postulate that inhibiting its function may not cause serious side effects. In addition, eEF2K is a peculiar kinase molecularly different from most of other mammalian kinases and new compounds that inhibit eEF2K should not necessarily interfere with other important protein kinases. In this review we will critically summarize the evidence supporting the role of the altered eEF2K/eEF2 pathway in defined neurological diseases and its implications in curing these diseases in animal models, and possibly in humans, by targeting eEF2K activity.