Neuroscience
-
Spinal cord injury (SCI) is a devastating neurological event that results in incomplete or complete loss of voluntary motor and sensory function. Until recently, there has been no effective curative strategy for SCI. Our previous study showed that microRNA (miR)-126 promoted angiogenesis and attenuated inflammation after SCI; however, the effect of miR-126-based treatment is limited because of the low efficiency of miR delivery in vivo. ⋯ In vitro, we observed that exosomes derived from miR-126-modified MSCs promoted the angiogenesis and migration of human umbilical venous endothelial cells (HUVECs) by inhibiting the expression of Sprouty-related EVH1 domain-containing protein 1 (SPRED1) and phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2). In conclusion, our study demonstrated that exosomes derived from MSCs transfected with miR-126 may promote angiogenesis and neurogenesis, inhibit apoptosis and promote functional recovery after SCI. These findings suggest that exosomes derived from miR-126-modified MSCs may serve as a novel potential therapeutic strategy for treating SCI.
-
Retinitis Pigmentosa (RP) is a class of inherited disorders caused by the progressive death of photoreceptors in the retina. RP is still orphan of an effective treatment, with increasing optimism deriving from research aimed at arresting neurodegeneration or replacing light-responsive elements. ⋯ Remarkably, it remains completely unclear whether visual cortex plasticity is still present in RP. Using a well-established murine model of RP, the rd10 mouse, we report that visual cortical circuits retain high levels of plasticity, preserving their capability of input-dependent remodelling even at a late stage of retinal degeneration.
-
Randomized Controlled Trial
Effects of Vortioxetine and Escitalopram on Electroencephalographic Recordings - A Randomized, Crossover Trial in Healthy Males.
The antidepressant drug vortioxetine has a multimodal action modulating neurotransmission through inhibition of the serotonin transporter and modulation of serotonin receptors. Vortioxetine has also been shown to alleviate cognitive symptoms in preclinical studies and in patients with depression. However, it is largely unclear how vortioxetine affects the brain processing in humans. ⋯ Although the global EEG changes were comparable between vortioxetine and escitalopram, subtle differences between treatment effects on the EEG in terms of effect size and regional distribution of the EEG changes were apparent. To our knowledge, the current results are the first data on how vortioxetine affects EEG in humans. The present study calls for further investigations addressing the possible electrophysiological and cognitive effects of vortioxetine.
-
Corticospinal neurons (CSNs) undertake direct cortical outputs to the spinal cord and innervate the upper limb through the brachial plexus. Our previous study has shown that the contralateral middle trunk transfer to the paralyzed upper extremity due to cerebral injury can reconstruct the functional cerebral cortex and improve the function of the paralyzed upper extremity. ⋯ The three trunk-labelled CSNs were intermingled in these cortices, and mostly connected to more than two trunks, especially the middle trunk-labelled CSNs with higher proportion of co-labelled neurons. Our findings revealed the distribution features of CSNs connecting to the adjacent spinal nerves that innervate the upper limb, which can improve our understanding of the corticospinal circuits associated with motor improvement and the functional cortical reconstruction after the middle trunk transfer.