Neuroscience
-
Patients with heart failure (HF) are more susceptible to cognitive impairment, but the mechanism is still unclear. This study aimed to observe the dynamic changes in brain glucose metabolism and neuronal structure in different stages of HF. An HF rat model was established by ligating the anterior descending branch of the left coronary artery. ⋯ Rats with AHF were in a compensatory state for increased glucose metabolism and slight neuronal damage. As a result, no significant cognitive impairment was observed. However, rats with CHF had significantly decreased cerebral glucose metabolism and neuronal degeneration, contributing to the cognitive function after HF.
-
Near threshold stochastic vestibular stimulation (SVS) enhances postural control and improves other symptoms in neurodegenerative disorders like Parkinson's disease (PD). Improvement of postural control can tentatively be explained by increased responsivity of the vestibular system, but the mechanism behind other effects of near threshold SVS, like improved motor symptoms and cognitive responsiveness in PD, are not known. To better understand the effect of vestibular stimulation on brain activity in PD, c-Fos expression was used as a marker of change in functional activity following SVS in 6-hydroxydopamine (6-OHDA) hemi-lesioned and in sham-lesioned rats. ⋯ Furthermore, c-Fos expression increased more in the habenula nucleus (LHb) after SVS than it did after levodopa in 6-OHDA hemilesioned animals and after saline in the sham-lesioned animals. SVS and levodopa induced similar c-Fos expression in several regions, e.g. the caudate putamen (CPu), where saline had no effect. In conclusion there was overlap between SVS-activated areas and levodopa-activated areas, but activation was more pronounced following SVS in the MVePC of 6-OHDA lesioned and in the LHb in both lesioned and sham-lesioned rats.
-
Editorial Comment
Visual Cortex Rewiring in Retinitis Pigmentosa: Plasticity is Preserved.
-
Randomized Controlled Trial
Effects of Vortioxetine and Escitalopram on Electroencephalographic Recordings - A Randomized, Crossover Trial in Healthy Males.
The antidepressant drug vortioxetine has a multimodal action modulating neurotransmission through inhibition of the serotonin transporter and modulation of serotonin receptors. Vortioxetine has also been shown to alleviate cognitive symptoms in preclinical studies and in patients with depression. However, it is largely unclear how vortioxetine affects the brain processing in humans. ⋯ Although the global EEG changes were comparable between vortioxetine and escitalopram, subtle differences between treatment effects on the EEG in terms of effect size and regional distribution of the EEG changes were apparent. To our knowledge, the current results are the first data on how vortioxetine affects EEG in humans. The present study calls for further investigations addressing the possible electrophysiological and cognitive effects of vortioxetine.