Neuroscience
-
Fluoro-Jade C (FJC) staining is widely used for the specific detection of all degenerating mature neurons, including apoptotic, necrotic, and autophagic cells. However, whether FJC staining can detect degenerating immature neurons and neural stem/precursor cells remains unclear. In addition, some conflicting studies have shown that FJC and its ancestral dyes, Fluoro-Jade (FJ) and FJB, can label resting/activated astrocytes and microglia. ⋯ Surprisingly degenerating mesenchymal cells were also FJC(+). The present study indicates that FJC is a reliable marker for degenerating neuronal cells during all differentiation stages. However, FJC could also label degenerating non-neuronal cells under some conditions.
-
In certain neurons, zinc ions are stored in synaptic vesicles by zinc transporter 3 (ZnT3). Vesicular zinc can then be released synaptically to modulate myriad targets. In vitro evidence indicates that these targets may include brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB). ⋯ BDNF protein levels increased with age in female mice but not in males. And in females, but not males, ZnT3 KO mice exhibited great hippocampal BDNF mRNA expression than wild type mice. We conclude that, at least in naïve mice housed under standard laboratory conditions, elimination of vesicular zinc does not affect BDNF or TrkB protein levels.
-
The gene associated with retinoid-interferon-induced mortality-19 (GRIM-19) plays several significant roles in cellular processes, including ATP synthesis, reactive oxygen species formation, and the regulation of glycolytic enzyme activity, which are closely related to the pathophysiological mechanisms of epilepsy. Therefore, we investigated the expression pattern of GRIM-19 in the CA1 area of the hippocampus in 8-week-old male C57BL/6 mice following pilocarpine-induced status epilepticus (SE). Neuronal death in the hippocampal CA1 area was prominently observed at 4 and 7 days after SE, and astrocytes and microglia became progressively activated beginning at 1 day after SE. ⋯ Moreover, we observed that both GRIM-19 and pyruvate kinase isozyme M2, a glycolytic enzyme, were highly expressed in reactive astrocytes after SE. These results indicate that expression of GRIM-19 in the hippocampus is mainly observed in neurons under normal conditions but is altered in the SE mouse model as evidenced by its increased expression in reactive astrocytes. The possible role of GRIM-19 in the glycolytic activity of reactive astrocytes is also discussed.
-
The alterations of dynamic brain functions in Alzheimer's disease (AD) remain far from well understood. In this study, using functional magnetic resonance imaging (fMRI) data, we adopted a co-activation pattern (CAP) approach, which relies on very few assumptions, to explore the differences of brain dynamics among healthy elderly, patients with early amnestic mild cognitive impairment (MCI) and patients with AD. Briefly, k-means clustering was applied to all fMRI frames from the three groups and generated a set of reproducible CAPs. ⋯ Primary findings include, for AD and MCI compared with NC, the decreased mean fraction of occurrence and persistence of DMN related CAPs, which indicates the typical DMN damage; the increased/decreased mean persistence of ventral/dorsal visual network related CAPs, which may associate with the visuospatial disorder of patients with AD pathology; the elevated transition and CAP entropies and multiple alterations of CAP transition probabilities, which imply the altered mode of information flow and lifted system uncertainty in AD brains. We also found correlations of proposed measurements to cerebrospinal fluid biomarkers and neuropsychological scores. This study verified the AD-related alteration found by traditional FC analysis, and proposed several new biomarkers which have the potential for assisting AD treatment and early diagnosis.
-
High gamma activity (HGA) of verbal-memory encoding using invasive-electroencephalogram has laid the foundation for numerous studies testing the integrity of memory in diseased populations. Yet, the functional connectivity characteristics of networks subserving these memory linkages remains uncertain. ⋯ The HGA-memory network comprised regions from both the cognitive control and primary processing networks, validating that effective verbal-memory encoding requires integrating brain functions, and is not dominated by a central cognitive core. Our results demonstrate a tonic intrinsic set of functional connectivity, which provides the necessary conditions for effective, phasic, task-dependent memory encoding.