Neuroscience
-
The causal connections among small-scale regions based on resting-state fMRI data have been extensively studied and a lot of achievements have been demonstrated. However, the causal connection among large-scale regions was seldom discussed. In this paper, we applied global Granger causality analysis to construct the causal connections in the whole-brain network among 103 healthy subjects (33 M/66F, ages 20-23) based on a resting-state fMRI dataset. ⋯ There were 817 directed edges identified as significant among the 8010 possible causal connections; seven driving hubs and ten driven hubs were identified in the whole-brain network. In CEN, dorsolateral prefrontal cortex (DlPFC) and superior parietal cortex (SPC) were the driven and driving hubs, respectively; in DMN, they were posterior cingulate cortex (PCC) and medial prefrontal cortex (MPFC); in DAN, they were frontal eye fields (FEF) and intraparietal sulcus (IPS); and in SN, they were frontoinsular cortex (FIC) and medial frontal cortex (MFC). These findings may provide insights into our understanding of human brain function mechanisms and the diagnosis of brain diseases.
-
Motor expertise has recently been associated with differences in domain-general cognition. Studies using averaged neurophysiological signals (e.g., event-related potentials) have shown varying degree of expertise-related differences in neural activity. As a result, the precise mechanisms underlying these differences remain to be described. ⋯ The interceptive sport players showed superior behavioral performance overall on the task relative to the static sport players. Although both groups exhibited greater sample entropy across most time scales in high-conflict relative to low-conflict trials over the parietal site, this effect was only evident at coarser time scales over the midfrontal site for the interceptive sport players. Together, our results suggest that individual differences in motor expertise may be associated with difference in information-processing capacity and information integration during cognitive processing, as demonstrated by differential cognitive modulation of brain signal variability.
-
Organophosphorus (OP) compounds are deadly chemicals that exert their intoxicating effects through the irreversible inhibition of acetylcholinesterase (AChE). In addition to an excess of peripheral ailments, OP intoxication induces status epilepticus (SE) which if left untreated may lead to permanent brain damage or death. Benzodiazepines are typically the primary therapies for OP-induced SE, but these drugs lose efficacy as treatment time is delayed. ⋯ FJB staining demonstrated that none of the tested drugs had widespread neuroprotective abilities. Overall these data suggest that neurosteroids may represent the most promising anticonvulsant option for OP-induced SE out of the seven unique mechanisms tested here. Additionally, these results suggest that drugs that provide significant neuroprotection from OP-induced SE without some degree of anticonvulsant activity are elusive, which further highlights the necessity to continue screening novel adjunct treatments through the CNS program.
-
Psychopath and neuropath often exhibit similar symptoms in clinical functional performances. However, few studies ever demonstrate the existence of overlapped brain functional mechanism between neurological and psychiatric disorders. ⋯ In these overlapped functions, we also find that the brain regions of neuropsychopathic disorders exhibit different cooperative patterns at different levels of brain activities. For example, strong-strong cooperative patterns were observed at high levels of brain activities in epilepsy, ADHD and schizophrenia.
-
The role of the dopamine D2 receptor (D2R) in regulating appetitive behavior continues to be controversial. Earlier literature suggests that reduced D2R signaling diminishes motivated behavior while more recent theories suggest that reduced D2R, as has been putatively observed in obesity, facilitates compulsive appetitive behavior and promotes overeating. Using a homecage foraging paradigm with mice, we revisit classic neuroleptic pharmacological studies from the 1970s that led to the 'extinction mimicry' hypothesis: that dopamine blockade reduces reinforcement leading to an extinction-like reduction in a learned, motivated behavior. ⋯ The selective knockouts exhibit no change in sucrose preference or sucrose reinforcement. These data suggest that striatal D2R regulates effort in response to costs, mediating cost sensitivity and behavioral thrift. In the context of obesity, these data suggest that reduced D2R is more likely to diminish effort and behavioral energy expenditure rather than increase appetitive motivation and consumption, possibly contributing to reduced physical activity commonly observed in obesity.