Neuroscience
-
Here we investigated effects of intramuscular (i.m.) heating-needle stimulation on persistent muscle nociception evoked by i.m. injection of different doses (50-200 µl) of complete Freund's adjuvant (CFA) in rats. Paw withdrawal reflexes evoked by noxious mechanical and heat stimulation as well as hind limb swelling were determined prior to and two weeks after the CFA injection. The unilateral injection of CFA induced a dose-related and long-lasting (5-14 d), bilateral secondary mechanical hyperalgesia and heat hypoalgesia associated with long-term limb swelling. ⋯ In contrast, the hind limb swelling was not affected by the microinjection of A-317491 into the thalamic VM or MD nucleus. The present study indicates that in the CFA-induced persistent muscle nociception condition, 43 °C heating-needle stimulation selectively increases descending inhibition, which effect is modulated by the thalamic VM nucleus. In addition to the antinociceptive role of P2X3 receptors in the thalamic VM nucleus, P2X3 receptors within the thalamic MD nucleus participate in the descending facilitation evoked by i.m. 46 °C heating-needle stimulation.
-
In this study, we investigated the potential role of C-X-C chemokine receptor type (CXCR) 5 in neurocognitive function in a mouse model of sepsis-associated encephalopathy (SAE). Adult male C57BL/6J mice received intracerebroventricular injections of small interfering RNAs (siRNAs) against CXCR5 or scrambled control siRNA. After 3 days, SAE was induced by cecal ligation and puncture (CLP, n = 16 per group). ⋯ This was accompanied by increased expression of CXCR5, IL-1β and IL-6 in the hippocampus. CXCR5 knockdown attenuated the memory and learning deficits induced by CLP and partially reversed the effects of CLP on numbers of proliferating, immature and mature neurons, and on expression of IL-1β and IL-6 in the hippocampus. These results suggest that CXCR5 knockdown can attenuate sepsis-induced deficits in hippocampal neurogenesis and cognitive function in mice with SAE.
-
Causal factors of psychiatric diseases are unclear, due to gene × environment interactions. Evaluation of consequences, after a dopamine-transporter (DAT) gene knock-out (DAT-KO), has enhanced our understanding into the pathological dynamics of several brain disorders, such as Attention-Deficit/Hyperactivity and Bipolar-Affective disorders. Recently, our attention has shifted to DAT hypo-functional (heterozygous, HET) rodents: HET dams display less maternal care and HET females display marked hypo-locomotion if cared by HET dams (Mariano et al., 2019). ⋯ When comparing both MAT- and MIX-HET to WT-control rats, decreased levels of DAT and HDAC4 were evident in the ventral-striatum; moreover, with respect to MIX-HET subjects, MAT-HET ones displayed increased DAT density in dorsal-striatum. MAT-HET rats displayed region-specific changes in DAT expression, compared to "classical" MIX-HET subjects: greater DAT availability may elevate threshold for dopamine action. Further behavioral and epigenetic characterizations of MAT-HETs, together with deeper characterization of maternal roles, could help to explore parent-of-origin mechanisms for such a peculiar phenotype.
-
The Src family kinase (SFK) is a subfamily of non-receptor tyrosine kinases. The SFK member Fyn is enriched at synaptic sites in the limbic reward circuit and plays a pivotal role in the regulation of glutamate receptors. In this study, we investigated changes in phosphorylation and function of the two key SFK members (Fyn and Src) and SFK interactions with a metabotropic glutamate (mGlu) receptor in the limbic striatum of adult rats in response to chronic passive stress, i.e., prolonged social isolation which is a pre-validated animal paradigm modeling depression in adulthood. ⋯ Moreover, social isolation induced an increase in surface expression of striatal mGlu5 receptors, which was reduced by an SFK inhibitor. These results indicate that Fyn interacts with mGlu5 receptors in striatal neurons. Adulthood social isolation in rats enhances the Fyn-mGlu5 interaction, which appears to be critical for the upregulation of surface mGlu5 receptor expression in striatal neurons.
-
In the olfactory system, the endocannabinoid system (ECS) regulates sensory perception and memory. A major structure involved in these processes is the anterior piriform cortex (aPC), but the impact of ECS signaling in aPC circuitry is still scantly characterized. ⋯ Conversely, the decrease of inhibitory transmission induced by exogenous cannabinoid agonists or DSI do not seem to be impacted by these factors. Altogether, these results indicate that CB1 receptors exert an anatomically specific and differential control of inhibitory plasticity in the aPC, likely involved in spatiotemporal regulation of olfactory processes.