Neuroscience
-
Interleaved rather than repetitive practice (RP) is associated with superior retention of motor skills. It has been argued that this results from improved post-practice consolidation reflected in greater offline gains following interleaved practice (IP). The magnitude of this offline benefit has been associated with greater recruitment of supplementary motor area (SMA) during encoding. ⋯ Enhanced offline gain following interleaved training resulted from rapid stabilization of performance within the first 6-h following encoding and overnight improvement that continued over multiple sleep episodes. Administration of anodal stimulation at SMA during RP improved performance during training compared to sham but this benefit was short lived as forgetting during the first 6-h after practice was consistent with that observed for the sham counterpart. However, supplementing RP with anodal stimulation at SMA did foster overnight offline performance gains not displayed by individuals that experienced RP in the absence of stimulation.
-
Traditional Chinese medicine has been reported to influence the proliferation and differentiation of neural stem cells (NSCs) that may be protective against nervous system diseases. Recent evidence indicates the importance of musk ketone in nerve recovery and preventing secondary damage after cerebral ischemic injury. A middle cerebral artery occlusion (MCAO) rat model was established by a transient filament model, and rats were treated with musk ketone (0.9 or 1.8 μM). ⋯ In addition, NSCs treated with musk ketone showed enhanced proliferation and differentiation along with increased PI3K/Akt signaling pathway activation. The effects of muck ketone were reversed by Akti-1/2. Altogether, musk ketone promoted NSC proliferation and differentiation and protected against cerebral ischemia by activating the PI3K/Akt signaling pathway, highlighting the potential of musk ketone as a physiologically validated approach for the treatment of cerebral ischemia.
-
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that selectively affects upper and lower motoneurons. Dismantlement of the neuromuscular junction (NMJ) is an early pathological hallmark of the disease whose cellular origin remains still debated. We developed an in vitro NMJ model to investigate the differential contribution of motoneurons and muscle cells expressing ALS-causing mutation in the superoxide dismutase 1 (SOD1) to neuromuscular dysfunction. ⋯ Expression of SOD1G93A in myotubes does not prevent the formation of a functional NMJ but leads to decreased contraction frequency and lowers the slow type I MHC isoform transcript levels. Expression of SOD1G93A in both motoneurons and myotubes or in motoneurons alone however alters the formation of a functional NMJ. Our results strongly suggest that motoneurons are a major factor involved in the process of NMJ dismantlement in an experimental model of ALS.
-
The extent of the networks that control the genesis and modulation of hippocampal sharp-wave ripples (SPW-Rs), which are involved in memory consolidation, remains incompletely understood. Here, we performed a detailed in vivo analysis of single cell firing in the lateral supramammillary nucleus (lSuM) during theta and slow oscillations, including SPW-Rs, in anesthetized rats. ⋯ Moreover, lSuM SPW-R-active neurons show increased firing activity during theta and slow oscillations as compared to unchanged neurons. These results suggest that a sub-population of lSuM neurons can interact with the hippocampus during SPW-Rs, raising the possibility that the lSuM may modulate memory consolidation.
-
Long non-coding RNA MALAT1 was previously revealed to express abnormally in animal and cellular models of stroke, suggesting its indispensable role in stroke. The aims of the present study were to further investigate the functions of MALAT1 and to elucidate the underlying molecular mechanisms. Oxygen glucose deprivation/re-oxygenation (OGD/R) challenge was used in human brain microvascular endothelial cells (HBMECs) to mimic stroke injury in vitro. ⋯ Knockdown of MALAT1 markedly inhibited HBMEC proliferation and angiogenesis, and meanwhile promoted apoptosis induced by OGD/R treatment. Most importantly, MALAT1 acted as a competing endogenous RNA (ceRNA) of miR-205-5p via direct bonding with each other in HBMECs under OGD/R damage, indirectly upregulating the downstream targeted gene VEGFA. MALAT1 protected the angiogenesis function of HBMECs under OGD/R conditions by interacting with miR-205-5p/VEGFA pathway.