Neuroscience
-
In this study, we investigated the potential role of C-X-C chemokine receptor type (CXCR) 5 in neurocognitive function in a mouse model of sepsis-associated encephalopathy (SAE). Adult male C57BL/6J mice received intracerebroventricular injections of small interfering RNAs (siRNAs) against CXCR5 or scrambled control siRNA. After 3 days, SAE was induced by cecal ligation and puncture (CLP, n = 16 per group). ⋯ This was accompanied by increased expression of CXCR5, IL-1β and IL-6 in the hippocampus. CXCR5 knockdown attenuated the memory and learning deficits induced by CLP and partially reversed the effects of CLP on numbers of proliferating, immature and mature neurons, and on expression of IL-1β and IL-6 in the hippocampus. These results suggest that CXCR5 knockdown can attenuate sepsis-induced deficits in hippocampal neurogenesis and cognitive function in mice with SAE.
-
Mechanisms initiated by traumatic brain injury (TBI), leading to the development of progressive secondary injury are poorly understood. MicroRNAs (miRNAs) have a proposed role in orchestrating the post-injury aftermath as a single miRNA can control the expression of several genes. We hypothesized that the post-injury level of circulating brain-enriched miR-124-3p explains the extent of post-TBI cortical lesion. ⋯ T2-weighted MRI revealed inter-animal differences in cortical lesion area. Linear regression analysis revealed that higher the plasma miR-124-3p level at 2 d post-TBI, larger the lesion area at chronic time point (R2 = 0.327, p < 0.01). Our findings indicate that the extent of lateral fluid-percussion injury-induced chronic cortical pathology associated with the acutely elevated plasma miR-124-3p level.
-
Here we investigated effects of intramuscular (i.m.) heating-needle stimulation on persistent muscle nociception evoked by i.m. injection of different doses (50-200 µl) of complete Freund's adjuvant (CFA) in rats. Paw withdrawal reflexes evoked by noxious mechanical and heat stimulation as well as hind limb swelling were determined prior to and two weeks after the CFA injection. The unilateral injection of CFA induced a dose-related and long-lasting (5-14 d), bilateral secondary mechanical hyperalgesia and heat hypoalgesia associated with long-term limb swelling. ⋯ In contrast, the hind limb swelling was not affected by the microinjection of A-317491 into the thalamic VM or MD nucleus. The present study indicates that in the CFA-induced persistent muscle nociception condition, 43 °C heating-needle stimulation selectively increases descending inhibition, which effect is modulated by the thalamic VM nucleus. In addition to the antinociceptive role of P2X3 receptors in the thalamic VM nucleus, P2X3 receptors within the thalamic MD nucleus participate in the descending facilitation evoked by i.m. 46 °C heating-needle stimulation.
-
Sleep loss or insomnia is among the contributing factors of cognitive deficit, the underlying mechanisms of which remain largely elusive. The endocannabinoid (eCB) system plays a role in sleep, while it is unknown if it is involved in the regulation of memory retrieval by sleep deprivation. In addition, it still controversial how rapid-eye-movement sleep deprivation (REMSD) affects the spatial memory of adolescent mice. ⋯ Mechanistically, REMSD induced eCB-mediated short-term and long-term synaptic plasticity changing including depolarization-induced suppression of inhibition (DSI) in the pyramidal neurons of the hippocampus, in which long-term synaptic plasticity changing was rescued by NESS0327. REMSD downregulated monoacylglycerol lipase, a hydrolase for the endocannabinoid 2-arachidonoylglycerol (2-AG), suggesting the involvement of eCB accumulation and the consequent synaptic plasticity in REMSD-elicited memory impairment in adolescent mice. These findings shed light on the role of sleep disorders in learning and memory deficit of adolescents.
-
Causal factors of psychiatric diseases are unclear, due to gene × environment interactions. Evaluation of consequences, after a dopamine-transporter (DAT) gene knock-out (DAT-KO), has enhanced our understanding into the pathological dynamics of several brain disorders, such as Attention-Deficit/Hyperactivity and Bipolar-Affective disorders. Recently, our attention has shifted to DAT hypo-functional (heterozygous, HET) rodents: HET dams display less maternal care and HET females display marked hypo-locomotion if cared by HET dams (Mariano et al., 2019). ⋯ When comparing both MAT- and MIX-HET to WT-control rats, decreased levels of DAT and HDAC4 were evident in the ventral-striatum; moreover, with respect to MIX-HET subjects, MAT-HET ones displayed increased DAT density in dorsal-striatum. MAT-HET rats displayed region-specific changes in DAT expression, compared to "classical" MIX-HET subjects: greater DAT availability may elevate threshold for dopamine action. Further behavioral and epigenetic characterizations of MAT-HETs, together with deeper characterization of maternal roles, could help to explore parent-of-origin mechanisms for such a peculiar phenotype.