Neuroscience
-
Mechanisms initiated by traumatic brain injury (TBI), leading to the development of progressive secondary injury are poorly understood. MicroRNAs (miRNAs) have a proposed role in orchestrating the post-injury aftermath as a single miRNA can control the expression of several genes. We hypothesized that the post-injury level of circulating brain-enriched miR-124-3p explains the extent of post-TBI cortical lesion. ⋯ T2-weighted MRI revealed inter-animal differences in cortical lesion area. Linear regression analysis revealed that higher the plasma miR-124-3p level at 2 d post-TBI, larger the lesion area at chronic time point (R2 = 0.327, p < 0.01). Our findings indicate that the extent of lateral fluid-percussion injury-induced chronic cortical pathology associated with the acutely elevated plasma miR-124-3p level.
-
Wallerian degeneration (WD) and axon regeneration generally take place following peripheral nerve injury (PNI). Schwann cells (SCs) and macrophages play major role in WD. SCs, acting as repair cells and primary signal mediators, dedifferentiate and proliferate to remove the debris, form Büngner's bands and secrete trophic factors during these processes. ⋯ Mechanism studies revealed that PKCα functioned through activating the ERK signaling pathway. Furthermore, PKCα also exhibited a neuroprotective role by upregulating the expression of neurotrophic factors in SCs. To sum up, this study offers novel insights for clarifying our understanding of the involvement of PKCα in the mechanism of peripheral nerve degeneration as well as regeneration.
-
The spontaneous action potential of isolated sinoatrial node (SAN) cells is regulated by a coupled-clock system of two clocks: the calcium clock and membrane clock. However, it remains unclear whether calcium clock inhibitors have a direct effect on the membrane clock. The purpose of this study was to investigate the direct effect of cyclopiazonic acid (CPA), a selective calcium clock inhibitor, on the function of the membrane clock of SAN cells. ⋯ These results indicate that the direct inhibition effect of CPA on the If current in SAN cells is both concentration- and time-dependent. The underlying mechanisms may involve slowing down steady-state activation and the downregulation of pacemaker channel protein expression.
-
The cerebellum is involved in the coordination of movement. Its cellular composition is dominated by GABAergic neuronal types, and glial cells are known to express functional receptors. GABAergic signaling regulates cell proliferation, differentiation, and migration during neurodevelopment. ⋯ The second population showed an outward-rectifying current-voltage relationship and responded to muscimol, but dye coupling was absent. These cells received synaptic input and were NG2+, but evoked calcium waves failed to modulate the frequency of spontaneous postsynaptic currents (sPSCs) or signaling into NG2 glia. We conclude that GABAA receptor-mediated signaling is selective for NG2 glia in the WM of the cerebellum.
-
In the olfactory system, the endocannabinoid system (ECS) regulates sensory perception and memory. A major structure involved in these processes is the anterior piriform cortex (aPC), but the impact of ECS signaling in aPC circuitry is still scantly characterized. ⋯ Conversely, the decrease of inhibitory transmission induced by exogenous cannabinoid agonists or DSI do not seem to be impacted by these factors. Altogether, these results indicate that CB1 receptors exert an anatomically specific and differential control of inhibitory plasticity in the aPC, likely involved in spatiotemporal regulation of olfactory processes.