Neuroscience
-
Myasthenia gravis (MG) is a relatively rare neurological disease that is usually associated with antibodies to the acetylcholine receptor (AChR). These antibodies (Abs) cause loss of the AChRs from the neuromuscular junction (NMJ), resulting in muscle weakness that can be life-threatening. Another form of the disease is caused by antibodies to muscle specific kinase (MuSK) that result in impaired AChR clustering and numbers at the NMJ, and may also interfere with presynaptic adaptive mechanisms. ⋯ All four conditions can be diagnosed by specific clinical features, electromyography and serum antibody tests, and can be treated effectively by a combination of pharmacological approaches and procedures that reduce the levels of the IgG antibodies. They form the first of a spectrum of diseases in which serum autoantibodies bind to extracellular domains of neuronal proteins throughout the nervous system and lead to constellations of clinical features including paralysis, sensory disturbance and pain, memory loss, seizures, psychiatric disturbance and movement disorders. This review will briefly summarize the ways in which this field has developed, since the 1970s when considerable contributions were made in Ricardo Miledi's laboratory at UCL.
-
Serotonin is an important neurotransmitter and neuromodulator. Disruption of the serotonergic system has been implicated in various psychiatric disorders such as schizophrenia and bipolar disorder. Most of the drugs targeting these neurotransmitter systems are classified primarily as agonists or inverse agonists/antagonists, with their described function being limited to activating the canonical signaling pathway(s), or inhibiting the pathway(s) respectively. ⋯ Using site-specific mutagenesis we have identified residues important for this functional selectivity, shown by dopamine at this receptor. Our identification of specific residues important in the functional selectivity of dopamine at 5-HT2A could have far reaching implications for the field of GPCR signaling and drug-design. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
-
The investigation on neurotransmission function during normal and pathologic development is a pivotal component needed to understand the basic mechanisms underlying neurodevelopmental pathologies. To study these diseases, many animal models have been generated which allowed to face the limited availability of human tissues and, as a consequence, most of the electrophysiology has been performed on these models of diseases. On the other hand, the technique of membrane microtransplantation in Xenopus oocytes allows the study of human functional neurotransmitter receptors thanks to the use of tissues from autopsies or surgeries, even in quantities that would not permit other kinds of functional studies. ⋯ Our findings retrace previous results and, in the light of this, further argue in favor of Prof. Miledi's technique of membrane microtransplantation that proves itself a very useful tool of investigation in the field of neurophysiology. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
-
Genetically encoded biosensors are widely used in cell biology for the non-invasive imaging of concentrations of ions or the activity of enzymes, to evaluate the distribution of small molecules, proteins and organelles, and to image protein interactions in living cells. These fluorescent molecules can be used either by transient expression in cultured cells or in entire organisms or through stable expression by producing transgenic animals characterized by genetically encoded and heritable biosensors. Using the mouse Thy1 mini-promoter, we generated a line of transgenic mice expressing a genetically encoded sensor for the simultaneous measurements of intracellular Cl- and pH. ⋯ This approach allowed us to assess cell morphology and track axonal projection, as well as to confirm E2GFP and DsRedm fluorescence colocalization. This analysis also provides a map of the brain areas suitable for non-invasive monitoring of intracellular Cl-/pH in normal and pathological conditions. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
-
Dimethyl fumarate (DMF) is the only available approved drug for first line treatment of multiple sclerosis (MS), a lethal condition impairing central nervous system (CNS). To date, however, little is known of its mechanisms of action. Only recently, it has been suggested that DMF exerts neuroprotective effects acting as an immunomodulator and that it may alter the activation state of microglia cells, crucial in MS pathogenesis. ⋯ Here, we examine the effects of DMF treatment on microglia functional activities, as phenotype, morphology, processes motility and rearrangement, migration, ATP response and iron uptake in mouse primary microglia culture and acute hippocampal slices. We found that DMF treatment reduces microglia motility, downregulating functional response to ATP, increases ferritin uptake and pushes microglia towards an anti-inflammatory phenotype, thus reducing its proinflammatory reactivity in response to tissue damage. These results highlight the effects of this compound on microglia functions and provide new insights on the mechanism of action of DMF in MS treatment.