Neuroscience
-
MicroRNA-9-5p (miRNA-9-5p) is an important regulator of angiogenesis in many pathological states. However, the effect of miRNA-9-5p on angiogenesis after traumatic brain injury (TBI) has not been elucidated. In this study, a controlled cortical impact (CCI) model was used to induce TBI in Sprague-Dawley rats, and an oxygen glucose deprivation (OGD) model was used to mimic the pathological state in vitro. ⋯ In addition, we found that the upregulation of miRNA-9-5p activated the Hedgehog pathway and increased the phosphorylation of AKT, which promoted the expression of cyclin D1, MMP-9 and VEGF in BMECs. All these results indicate that the upregulation of miRNA-9-5p promotes angiogenesis and improves neurological functional recovery after TBI, mainly by activating the Hedgehog pathway. MiRNA-9-5p may be a potential new therapeutic target for TBI.
-
NSAIDs are the drugs most commonly used to alleviate pain. Despite being a heterogeneous group of compounds, all of them share a mechanism of action based on blockade of COXs enzymes, which confers them anti-inflammatory and analgesic properties. Diclofenac is a NSAID with preferred activity on COX-2 isozymes, but additionally, other targets may be implicated in its analgesic activity. ⋯ Depressant actions of both compounds were strongly reduced after Kv7 channel blockade with XE-991, indicating the implication of these channels in the observed effects. Flupirtine, but not diclofenac, also reduced action potential firing of dorsal horn neurons in response to electrical activation of nociceptive afferents, suggesting differences in the actions of both compounds on Kv7 channel configurations present in sensory areas of the cord. Results demonstrate previously unknown central actions of diclofenac on Kv7 channels located in spinal circuits, expanding the knowledge about its pharmacological actions.
-
Androgen receptor (AR) is abundantly expressed in the preoptico-hypothalamic area, bed nucleus of stria terminalis, and medial amygdala of the brain where androgen plays an important role in regulating male sociosexual, emotional and aggressive behaviors. In addition to these brain regions, AR is also highly expressed in the hippocampus, suggesting that the hippocampus is another major target of androgenic modulation. It is known that androgen can modulate synaptic plasticity in the CA1 hippocampal subfield. ⋯ These effects were successfully reversed by treatment with either aromatizable androgen T or non-aromatizable androgen DHT. Furthermore, administration of the AR-antagonist flutamide in intact rats showed similar changes to those in OCX rats, suggesting that androgens affect the excitability of CA1 pyramidal neurons possibly by acting on the AR. Our current study potentially clarifies the role of androgen in enhancing the basal excitability of the CA1 pyramidal neurons, which may influence selective neuronal excitation/activation to modulate certain hippocampal functions.
-
Stroke is one of the leading causes of mortality and neurological morbidity. Intracerebral hemorrhage (ICH) has the poorest prognosis among all stroke subtypes and no treatment has been effective in improving outcomes. Following ICH, the observed high levels of S100B protein have been associated with worsening of injury and neurological deficits. ⋯ Following determination of the effective dose, ICH damage was induced by IV-S collagenase intrastrial injection and 2 μg/μl AA was injected through ICV route immediately before injury. AA treatment prevented ICH-induced neurological deficits and tissue damage, inhibited excessive astrocytic activation and cellular apoptosis, reduced peripheral and central S100B levels (in striatum, serum and cerebrospinal fluid), improved neuronal survival and enhanced the antioxidant defences after injury. Altogether, these results suggest that S100B is a viable target for treating ICH and highlight AA as an interesting strategy for improving neurological outcome after experimental brain hemorrhage.
-
Alzheimer's disease (AD) pathology is characterized by amyloid plaques containing amyloid beta (Aβ) peptides, neurofibrillary tangles containing hyperphosphorylated tau protein, and neuronal loss. In addition, Aβ deposition in brain microvessels, known as cerebral amyloid angiopathy (CAA), increases blood-brain barrier (BBB) permeability and induces vascular dysfunction which aggravates AD pathology. The aim of the present study was to characterize neurovascular dysfunction in the Tg-SwDI mouse model of AD. ⋯ In addition, the TJ protein occludin was decreased in Tg-SwDI mice relative to WT mice, which correlated with an increase in BBB permeability in cultured brain endothelial cells. These findings demonstrated that Tg-SwDI mice exhibit Aβ aggregation that is due, in part, to impaired Aβ clearance driven by both a decrease in P-gp and increase in RAGE protein levels in brain capillaries. Aβ aggregation promotes a decrease in the expression of the TJ protein occludin, and as consequence an increase in BBB permeability.