Neuroscience
-
In the retina, ON- and OFF-type bipolar cells are classified by subtype-specific center responses, which are attributed to differences in glutamate receptor subtypes. However, the mechanisms by which ON- and OFF-type bipolar cells generate subtype-specific surround responses remain unclear. One hypothesis for surround responses is that intracellular Cl concentrations ([Cl-]i) are set at different levels to achieve opposite polarities for GABA responses in ON- and OFF-type bipolar cells. ⋯ Strong NKCC1 activity increased [Cl-]i in rod (ON-) type bipolar cells, while that of KCC2 decreased [Cl-]i in OFF-type bipolar cells. We also confirmed the presence of a [Cl-]i gradient between dendrites and axon terminals in rod (ON-type) bipolar cells. Thus, the subtype-specific control of [Cl-]i is achieved by the activity of NKCC1 relative to that of KCC2 and appears to influence the polarity of surround responses.
-
Depression may be precipitated by the negative impact of chronic stress, which is considered to play a key role in this neuropsychiatric disorder. Interestingly, depressed patients show decreased levels of melatonin. This hormone acts pro-neurogenic and exhibits anti-depressant effects in rodent models of predictive antidepressant-like effects. ⋯ We also investigated the potential effects of melatonin and citalopram on microglial cells, hippocampal neurogenesis and peripheral cytokine profiles. Melatonin and citalopram induced similar antidepressant-like activities that occurred with some of the the following findings: (1) reversal of the morphological alterations in microglia; (2) reversal of the decreased immunoreactivity to CX3CL1 and CX3CR1 in the dentate gyrus; (3) positive regulation of cell proliferation, survival and complexity of the dendritic trees of doublecortin-cells; and (4) modifications of peripheral CX3CL1 expression. This outcome is consistent with the hypothesis about the antidepressant-like effect of melatonin and supports its relevance as a modulator of the niche in the dentate gyrus.
-
Monoamine neuronal system abnormality is hypothesized to be the neurochemical pathology in depression, as it is supported by the efficacy of conventional antidepressants. The learned helplessness paradigm generates depression-like (LH) and non-depression-like (non-LH) behavioral models. Examination of the neurochemical states accompanying such distinct behavioral phenotypes can facilitate investigations of the mechanisms underlying resilience and the search for new strategies for depression prevention and therapy. ⋯ Compared with naïve rats, non-LH rats showed increased DA and homovanillic acid (HVA) levels in the amygdala and increased 5-hydroxyindoleacetic acid (5-HIAA) levels in the hippocampus and NAc, whereas LH rats exhibited increased HVA levels and DA turnovers in the hippocampus, decreased 5-HIAA levels in the mPFC, increased DA turnovers in the OFC, and decreased DA turnovers in the amygdala. Comparison between LH and non-LH suggest that suppressed amygdaloid NA activity and elevated 5-HT activity in the NAc are related to stress resilience. Changes that occurred in LH or non-LH rats when compared with those in naïve rats suggest that suppressed DA activity in the hippocampus and OFC; elevated DA activity in the amygdala; and facilitated 5-HT activity in the hippocampus, mPFC, and NAc are phenomena related to the expression of a non-depression-like phenotype.