Neuroscience
-
In contrast to other rhythmic tasks such as running, the preferred movement rate in cycling does not minimize energy consumption. It is possible that neurophysiological mechanisms contribute to the choice of cadence, however this phenomenon is not well understood. Eleven participants cycled at a fixed workload of 125 W and different cadences including a freely chosen cadence (FCC, ∼72), and fixed cadences of 70, 80, 90 and 100 revolutions per minute (rpm) during which transcranial magnetic stimulation (TMS) was used to measure short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). ⋯ Inhibition-excitation ratio (SICI divided by ICF) declined (P = 0.014) with an increase in cadence. The results demonstrate that SICI is attenuated during FCC compared to fixed cadences. The outcomes suggest that the attenuation of intracortical inhibition and augmentation of ICF may be a contributing factor for FCC.
-
Animal studies suggest that the vestibular system autoregulates its sensitivity in response to prolonged low- or high-intensity motion in order to maintain an optimal working range. In humans, corresponding attenuations of vestibular responses after prolonged high-intensity motion exposure have been demonstrated. Here we explored whether a complementary increase in human vestibular sensitivity can be induced by motion conditioning at low-intensity, subliminal amplitudes. ⋯ Vestibular sensitivity for yaw rotations remained on average unaltered after IA conditioning indicating that sensitizing effects might be selective for the end-organ-specific vestibular pathways being stimulated during conditioning. These findings demonstrate that human vestibular sensitivity can be enhanced by subliminal sensory conditioning, similar to sensitizing effects observed in other sensory modalities. Conditioning-induced sensitization of vestibular responses may be an effective treatment for decrements in vestibular sensitivity in the elderly and patients with vestibular hypofunction.
-
The dorsal raphe nucleus (DRN) participates in stress responses and in mood regulation via its ascending release of serotonin (5-HT) onto neural circuits within the forebrain. Although the 5-HT DRN region is easily defined via 5-HT-expressing DRN neurons, the neuroarchitecture and microcircuitry that confer its multifunctionality have remained incompletely understood and have required further investigation. ⋯ Furthermore, corticosterone administration into male rats as a rodent model of depression induced significantly higher c-Fos expression in 5-HT3AR-positive GABAergic neurons compared to that in 5-HT neurons within the DRN. Taken together, our findings suggest that 5-HT3AR-positive GABAergic neurons in the DRN participate in responses to stress hormones in a rat model of depression.
-
The pulvinar is a higher-order thalamic relay and a central component of the extrageniculate visual pathway, with input from the superior colliculus and visual cortex and output to all of visual cortex. Rodent pulvinar, more commonly called the lateral posterior nucleus (LP), consists of three highly-conserved subdivisions, and offers the advantage of simplicity in its study compared to more subdivided primate pulvinar. Little is known about receptive field properties of LP, let alone whether functional differences exist between different LP subdivisions, making it difficult to understand what visual information is relayed and what kinds of computations the pulvinar might support. ⋯ SIGNIFICANCE STATEMENT: The pulvinar has a perplexing role in visual cognition as no clear link has been found between the functional properties of its neurons and behavioral deficits that arise when it is damaged. The pulvinar, called the lateral posterior nucleus (LP) in rats, is a higher order thalamic relay with input from the superior colliculus and visual cortex and output to all of visual cortex. By characterizing single-cell response properties in anatomically distinct subdivisions we found two separate visual feature processing channels in the pulvinar, one in lateral LP related to higher speed processing which likely derives from superior colliculus input, and the other in rostromedial LP for motion processing derived through input from visual cortex.
-
Vascular endothelial cells were activated during acute ischemic brain injury, which could induce neural progenitor cell proliferation and migration. However, the mechanism was still unknown. In the current study, we explored whether vascular endothelial cells promoted neural progenitor cell proliferation and whether migration occurs via exosome communication. ⋯ BrdU/nestin-positive cells in Exos group rats were significantly increased (p < 0.05) in the peri infarct area, the ipsilateral DG zone of the hippocampus, and the ventral sub-regions of SVZ when compared with the rats in the control group. Further, in vitro study demonstrated that neural progenitor cell proliferation and migration were activated after exosomes treatment, and cell apoptosis was attenuated compared to the control (p < 0.05). Our study suggested that exosomes should be essential for the reconstruction of neuronal vascular units and brain protection in an acute ischemic injured brain.