Neuroscience
-
Distinguishing multiple coding levels in theta band activity during working memory gating processes.
Cognitive control and working memory (WM) processes are essential for goal-directed behaviour. Cognitive control and WM are probably based on overlapping neurophysiological mechanisms. For example, theta-band activity (TBA) plays an important role in both functions. ⋯ The data suggest that the identified processes are implemented in specific neuroanatomical structures. In particular, the medial frontal cortex, temporal cortical regions and insular cortex are involved in these dynamics. The study shows that principles of information coding relevant to cognitive control processes are also crucial for understanding WM gating.
-
Glutamate excitotoxicity is one of the important pathophysiological culprits in retinal ganglion cells (RGCs) damage after acute optic nerve injury such as traumatic optic neuropathies and glaucoma. It is necessary to elucidate the mechanism of glutamate injury to RGCs in order to find the relevant neuroprotector. In this study, it was observed that the expression of Parkin increased and peaked at 24 h after glutamate injury to RGCs. ⋯ Moreover, the genetic and pharmacological downregulation of NLRP3 improved survival of RGCs against glutamate excitotoxicity. In the end, knockdown of Parkin exacerbated glutamate induced RGCs damage via triggering NLRP3 inflammasome activation. Taken together, these results shed light on the promising molecular targets for the prevention and treatment of acute optic nerve injury.
-
In the past 20 years, neural engineering has made unprecedented progress in the interpretation of brain information (e.g., brain-computer interfaces) and in neuromodulation (e.g., electromagnetic stimulation and neurofeedback). However, there has been little research aiming to improve the performance of brain-computer interfaces (BCIs) using neuromodulation. The present study presents a novel design for a neurofeedback training (NFT) method to improve the operation of a steady-state visual evoked potential (SSVEP)-based BCI and further explores its underlying mechanisms. ⋯ Evidence from a network analysis and an attention test further indicates that NFT improves attention by developing the control capacity of the parietal lobe and then enhances the above SSVEP indicators. Upregulating the amplitude of parietal alpha oscillations using NFT significantly improves the SSVEP-based BCI performance by modulating the control network. The study validates an effective neuromodulation method and possibly contributes to explaining the function of the parietal lobe in the control network.