Neuroscience
-
Because hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels modulate the excitability of cortical and hippocampal principal neurons, these channels play a key role in the hyperexcitability that occurs during the development of epilepsy after a brain insult, or epileptogenesis. In epileptic rats generated by pilocarpine-induced status epilepticus, HCN channel activity is downregulated by two main mechanisms: a hyperpolarizing shift in gating and a decrease in amplitude of the current mediated by HCN channels, Ih. Because these mechanisms are modulated by various phosphorylation signaling pathways, we hypothesized that phosphorylation changes occur at individual HCN channel amino acid residues (phosphosites) during epileptogenesis. ⋯ We also identified a novel HCN1 channel phosphosite S791, which underwent significantly increased phosphorylation during the chronic epilepsy stage. Heterologous expression of a phosphomimetic mutant, S791D, replicated a hyperpolarizing shift in Ih gating seen in neurons from chronically epileptic rats. These results show that HCN1 channel phosphorylation is altered in epilepsy and may be of pathogenic importance.
-
The orbitofrontal cortex (OFC) has been anatomically divided into a number of subregions along its medial-lateral axis, which behavioral research suggests have distinct functions. Recently, evidence has emerged suggesting functional diversity is also present along the anterior-posterior axis of the rodent OFC. However, the patterns of anatomical connections that underlie these differences have not been well characterized. ⋯ Interestingly, while labelling in some of these input regions revealed only a gradient in connectivity strength, other regions seem to project almost exclusively to specific OFC subdivisions. Moreover, differences in input patterns between ALO and PLO were as pronounced as those between PLO and PVO. Together, our results support the existence of distinct anatomical circuits within lateral OFC along its anterior-posterior axis.
-
In vertebrates, muscle activity is dependent on acetylcholine (ACh) released from neuromuscular junctions (NMJs), and changes in cholinergic neurotransmission are linked to a variety of neuromuscular diseases, including congenital myasthenic syndromes (CMS). The storage and release of ACh depends on the activity of the Vesicular Acetylcholine Transporter (VAChT), a rate-limiting step for cholinergic neurotransmission whose loss of function mutations was shown to cause human congenital myasthenia. However, we know much less about increased VAChT activity, due to copy number variations, for example. ⋯ We also observed that these larger synaptic vesicles were less rounded in comparison with control. Finally, we showed that ChAT-ChR2-EYFP mice NMJs have compromised safety factor, possible due to the structural alterations we described. These findings reveal that physiological cholinergic activity is important to maintain the structure and function of the neuromuscular system and help to understand some of the neuromuscular adverse effects experienced by chronically increased NMJ neurotransmission, such as individuals treated with cholinesterase inhibitors.
-
Mild cognitive impairment (MCI) detection using magnetic resonance image (MRI), plays a crucial role in the treatment of dementia disease at an early stage. Deep learning architecture produces impressive results in such research. Algorithms require a large number of annotated datasets for training the model. ⋯ Tissue segmentation was applied on each subject to extract the gray matter (GM) tissue. In order to check the validity, the proposed method is tested on preprocessing data and achieved the highest rates of the classification accuracy on AD vs NC is 98.73%, also distinguish between EMCI vs LMCI patients testing accuracy 83.72%, whereas remaining classes accuracy is more than 80%. Finally, we provide a comparative analysis with other studies which shows that the proposed model outperformed the state-of-the-art models in terms of testing accuracy.
-
Matrix metalloproteinase-9 (MMP-9) degrades collagen and other cellular matrix proteins. After acute ischemic stroke, increased MMP-9 levels are correlated with hemorrhage, lack of reperfusion and stroke severity. Nevertheless, definitive data that MMP-9 itself causes poor outcomes in ischemic stroke are limited. ⋯ Similarly, when compared to treatment with r-tPA and saline, treatment with r-tPA and an MMP-9 antibody inhibitor significantly improved neurobehavioral outcomes (p < 0.001), decreased weight loss (p < 0.001) and prolonged survival (p < 0.01). In summary, both prolonged ischemia and r-tPA selectively enhanced MMP-9 expression in the ischemic hemisphere. When administered with r-tPA, specific MMP-9 inhibitors markedly reduced brain hemorrhage, swelling, infarction, disability and death, which suggests that blocking the deleterious effects of MMP-9 may improve outcomes after ischemic stroke.