Neuroscience
-
α-Synuclein (α-syn), especially its abnormal oligomeric and phosphorylated form, plays a critical role in the pathogenesis of Parkinson's disease (PD). Plasma exosomal α-syn species have been shown to be a promising PD biomarker. However, whether different α-syn species in plasma exosomes (the oligomeric α-syn and the Ser129 phosphorylated α-syn (p-α-syn)) which represent the PD pathogenesis in the brain could be specific peripheral PD biomarker haven't been well elucidated. ⋯ Aggregated α-syn and p-α-syn existed both inside and on the membrane surface of plasma exosomes. The Receiver operating characteristic (ROC) performance of α-syn oligomer/total α-syn in exosomes was moderately helpful in PD diagnosis (AUC = 0.71, sensitivity = 60.5%, specificity = 59.4%), and the ratio of p-α-syn oligomer/total p-α-syn showed similar result (AUC = 0.69, sensitivity = 60.0%, specificity = 59.5%). This study indicates that the oligomeric α-syn/total α-syn and oligomeric p-α-syn/total p-α-syn ratio in plasma exosomes may be applied to assist the PD diagnosis, which needs further research.
-
Some patients with damage to the primary visual cortex (V1) exhibit visuomotor ability, despite loss of visual awareness, a phenomenon termed "blindsight". We review a series of studies conducted mainly in our laboratory on macaque monkeys with unilateral V1 lesioning to reveal the neural pathways underlying visuomotor transformation and the cognitive capabilities retained in blindsight. After lesioning, it takes several weeks for the recovery of visually guided saccades toward the lesion-affected visual field. ⋯ However, a variety of cognitive functions are retained such as saliency detection during free viewing, top-down attention, short-term spatial memory, and associative learning. These observations indicate that blindsight is not a low-level sensory-motor response, but the residual visual inputs can access these cognitive capabilities. Based on these results we suggest that the macaque model of blindsight replicates type II blindsight patients who experience some "feeling" of objects, which guides cognitive capabilities that we naïvely think are not possible without phenomenal consciousness.
-
Review
The Roles of Oxidative Stress in Regulating Autophagy in Methylmercury-induced Neurotoxicity.
Methylmercury (MeHg) is a potential neurotoxin that is highly toxic to the human central nervous system. Although MeHg neurotoxicity has been widely studied, the mechanism of MeHg neurotoxicity has not yet been fully elucidated. Some research evidence suggests that oxidative stress and autophagy are important molecular mechanisms of MeHg-induced neurotoxicity. ⋯ The current study reviews the activation of Nuclear factor-erythroid-2-related factor (Nrf2)-related oxidative stress pathways and autophagy signaling pathways in the case of MeHg neurotoxicity. In addition, autophagy mainly plays a role in the neurotoxicity of MeHg through mTOR-dependent and mTOR-independent autophagy signaling pathways. Finally, the regulation of autophagy by reactive oxygen species (ROS) and Nrf2 in MeHg neurotoxicity was explored in this review, providing a new concept for the study of the neurotoxicity mechanism of MeHg.
-
The progression of neurodegenerative disorders is mainly characterized by immense neuron loss and death of glial cells. The mechanisms which are active and regulate neuronal cell death are namely necrosis, necroptosis, autophagy and apoptosis. These death paradigms are governed by a set of molecular determinants that are pivotal in their performance and also exhibit remarkable overlapping functional pathways. ⋯ In addition, the review also focuses on the exorbitant number of newer molecules with the potential to cross communicate between death pathways and create a complex cell death scenario. This review highlights recent studies on the inter-dependent regulation of cell death paradigms in neurodegeneration, mediated by cross-communication between pathways. This will help in identifying potential targets for therapeutic intervention in neurodegenerative diseases.
-
The transport mechanism of intestinal α-synuclein to the central nervous system has become a new hot topic in Parkinson's disease (PD) research. It is worth noting that the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been reported to be involved in the pathogenesis of PD. After silencing GAPDH expression by GAPDH siRNA, the normal human intestinal epithelial crypt-like (HIEC) and human SH-SY5Y neuroblastoma cell lines were co-cultured with Escherichia coli cells which were transfected with an α-synuclein overexpression plasmid. ⋯ Oxidative stress was assessed by measuring the levels of reactive oxygen species (ROS) using 2',7'-dichlorofluorescein diacetate (DCFH-DA), thiobarbituric acid-reactive substances (TBARS), and antioxidant capacity was assessed by measuring the glutathione (GSH) levels and superoxide dismutase (SOD) activity. The silencing of the expression of GAPDH pre-knockdown was found to reduce the intracellular levels of ROS and lipid peroxidation, enhance autophagy activity, thereby reducing the cell injury, apoptosis and necrosis induced by exogenous α-synuclein protein in SH-SY5Y cells. This study identifies a new therapeutic target of exogenous α-synuclein protein induced SH-SY5Y cell injury and improves our understanding of the pathophysiological role of GAPDH in vitro.