Neuroscience
-
Death-associated protein kinase (DAPK) is a Ca2+/CaM-regulated protein kinase that is involved in cell death processes by multiple pathways. It has been reported that DAPK may play a role in brain ischemia-induced neuronal death, but this mechanism is not well understood. DANGER, a membrane-associated protein that binds to DAPK physiologically, inhibits DAPK activation. ⋯ Moreover, the expression of DANGER and the interaction between DANGER and IP3R on the endoplasmic reticulum was significantly increased at I/R 6 h, which may be related to a reduction of DAPK/DANGER binding under I/R condition. Furthermore, MK-801, DAPK inhibitor and FK-506 had neuroprotective effects against hippocampal CA1 neuronal death 5 days after I/R. In conclusion, our data suggest that the dissociation of DANGER from DAPK may mediate DAPK activation, which is involved in DAPK-related neuronal death following I/R injury.
-
D-2-hydroxyglutaric acid (D-2-HG) accumulates and is the biochemical hallmark of D-2-hydroxyglutaric acidurias (D-2-HGA) types I and II, which comprehend two inherited neurometabolic diseases with severe cerebral abnormalities. Since the pathogenesis of these diseases is poorly established, we tested whether D-2-HG could be neurotoxic to neonatal rats. D-2-HG intracerebroventricular administration caused marked vacuolation in cerebral cortex and striatum. ⋯ Furthermore, the antagonist of NMDA glutamate receptor MK-801 and the antioxidant melatonin were able to prevent most of D-2-HG-induced pro-oxidant effects, implying the participation of these receptors in D-2-HG-elicited oxidative damage. Our results also demonstrated that D-2-HG markedly reduced the respiratory chain complex IV and creatine kinase activities. It is presumed that these deleterious pathomechanisms caused by D-2-HGA may be involved in the brain abnormalities characteristic of early-infantile onset D-2-HGA.
-
Arousal is a potent mechanism that provides the brain with functional flexibility and adaptability to external conditions. Within the wake state, arousal levels driven by activity in the neuromodulatory systems are related to specific signatures of neural activation and brain synchrony. However, direct evidence is still lacking on the varying effects of arousal on macroscopic brain characteristics and across a variety of cognitive states in humans. ⋯ Increased integration in the salience network was also related to faster pupil dilation in the two attentional tasks. Furthermore, task performance was related to arousal level, with lower accuracy at higher level of arousal. Taken together, our study provides evidence in humans for pupil size as an index of brain network state, and supports the role of arousal as a switch that drives brain coordination in specific brain regions according to the cognitive state.
-
Attenuation of Sensory Transmission Through the Rat Trigeminal Ganglion by GABA Receptor Activation.
While the trigeminal ganglion is often considered a passive conduit of sensory transmission, neurons and satellite glial cells (SGCs) within it can release neurotransmitters and express neuroreceptors. Some trigeminal ganglion neurons contain the neurotransmitter γ-aminobutyric acid (GABA) and express GABA receptors. There is behavioral evidence that increased GABA levels in the trigeminal ganglion decreases nociception, while a loss of GABA receptors results in hyperalgesia, although the neural mechanisms for this remain to be investigated. ⋯ Masticatory muscle evoked brainstem trigeminal neuron responses were significantly attenuated by intraganglionic injection of muscimol (GABAA) but not baclofen (GABAB). The mechanical sensitivity of slow and fast conducting masticatory muscle afferent fibers was decreased and increased, respectively, by intraganglionic injection of both muscimol and baclofen. Activation of GABAA receptors may exert a gating effect on sensory transmission through the trigeminal ganglion by decreasing putative nociceptive input and enhancing innocuous sensory input.