Neuroscience
-
It is well known that neuroinflammation plays a key role in neurodegenerative diseases. Hypoxia-inducible factor (HIF) and its hydroxylases-Prolyl-4-hydroxyases (PHDs) have been found to modulate the inflammatory processes. Here, the effects of PHDs enzyme onlipopolysaccharide-induced neuroinflammation and neurocognitive deficits were investigated. ⋯ DMOG and PHD3knockout decreased expression of inflammatory cytokines and improved the metabolic reprogramming caused by LPS treatment. Furthermore, pretreatment of DMOG reversed learning and memory deficits in systemic LPS-exposed mice through anti-neuroinflammation, which is independent of DMOG angiogenesis. These findings suggested that PHD3 may mediate LPS-induced microglial activation and neuroinflammation-associated neurobehavioral deficits.
-
Electroencephalogram (EEG)-based quantitative pain measurement is valuable in the field of clinical pain treatment, providing objective pain intensity assessment especially for nonverbal patients who are unable to self-report. At present, a key challenge in modeling pain events from EEG is to find invariant representations for intra- and inter-subject variations, where current methods based on hand-crafted features cannot provide satisfactory results. Hence, we propose a novel method based on deep learning to learn such invariant representations from multi-channel EEG signals and demonstrate its great advantages in EEG-based pain classification tasks. ⋯ The proposed method aims to jointly preserve the spatial-spectral-temporal structures of EEG, for learning representations with high robustness against intra-subject and inter-subject variations, making it more conducive to multi-class and subject-independent scenarios. Empirical evaluation on 4-level pain intensity assessment within the subject-independent scenario demonstrated significant improvement over baseline and state-of-the-art methods in this field. Our approach applies deep neural networks (DNNs) to pain intensity assessment for the first time and demonstrates its potential advantages in modeling pain events from EEG.
-
The study of the effects of fear and disgust on the capture of automatic attention is gaining interest. Most findings reveal a more efficient capture of exogenous attention by disgust than by fear stimuli, although the underlying mechanisms are not completely understood. The manipulation of their spatial frequency may provide new insight that may contribute to clarify this issue. ⋯ The results showed that disgust and fear distractors captured exogenous attention equally early, as indicated by the augmented amplitude of the N2p, and later disgust distractors are the ones eliciting the highest amplitude of the LPP component. While in an initial stage, both stimuli seem to have similar preferential access to further processing allowing fast responding in both cases, disgust is more deeply processed at a later stage probably facilitating its examination. These findings suggest that exploring the temporal course of processing is relevant for the understanding of the differential capture of exogenous attention by disgust and fear distractors.
-
Fragmentation of the daily sleep-wake rhythm with increased nighttime awakenings and more daytime naps is correlated with the risk of development of Alzheimer's disease (AD). To explore whether a causal relationship underlies this correlation, the present study tested the hypothesis that chronic fragmentation of the daily sleep-wake rhythm stimulates brain amyloid-beta (Aβ) levels and neuroinflammation in the 3xTg-AD mouse model of AD. Female 3xTg-AD mice were allowed to sleep undisturbed or were subjected to chronic sleep fragmentation consisting of four daily sessions of enforced wakefulness (one hour each) evenly distributed during the light phase, five days a week for four weeks. ⋯ Sleep fragmentation also stimulated neuroinflammation as shown by increased expression of markers of microglial activation and proinflammatory cytokines measured by q-RT-PCR analysis of hippocampal samples. No significant effects of sleep fragmentation on Aβ, tau, or neuroinflammation were observed in the cerebral cortex. These studies support the concept that improving sleep consolidation in individuals at risk for AD may be beneficial for slowing the onset or progression of this devastating neurodegenerative disease.
-
Orexin-producing cells in the lateral hypothalamic area have been shown to be involved in a wide variety of behavioral and cognitive functions, including the recall of appetitive associations and a variety of social behaviors. Here, we investigated the role of orexin in the acquisition and recall of socially transmitted food preferences in the rat. Rats were euthanized following either acquisition, short-term recall, or long-term recall of a socially transmitted food preference and their brains were processed for orexin-A and c-Fos expression. ⋯ In the infralimbic cortex, we found that social behavior was significantly predictive of c-Fos expression, with social behaviors related to olfactory exploration appearing to be particularly influential. We additionally found that appetitive behavior was significantly predictive of orexin-A activity in a sex-dependent matter, with the total amount eaten correlating negatively with orexin-A/c-Fos colocalization in male rats but not female rats. These findings suggest a potential sex-specific role for the orexin system in balancing the stimulation of feeding behavior with the sleep/wake cycle.