Neuroscience
-
Evaluation of stimulus salience is critical for any higher organism, as it allows for prioritizing of vital information, preparation of responses, and formation of valuable memory. The paraventricular nucleus of the thalamus (PVT) has recently been identified as an integrator of stimulus salience but the neurochemical basis and afferent input regarding salience signaling have remained elusive. Here we report that neuropeptide S (NPS) signaling in the PVT is necessary for stimulus salience encoding, including aversive, neutral and reinforcing sensory input. ⋯ The PVT appears to provide stimulus salience encoding in a dose- and NPS-dependent manner. PVT NPSR1 neurons recruit the nucleus accumbens shell and structures in the prefrontal cortex and amygdala, which were previously linked to the brain salience network. Overall, these results demonstrate that stimulus salience encoding is critically associated with NPS activity in the PVT.
-
To determine detrimental effects of estrogen and insulin deficiencies on hippocampus, we examined apoptosis-induced neuronal damage and cholinergic system in ovariectomized and/or diabetic rat hippocampus. Possible neuroprotective effects of treadmill exercise were also investigated. Adult female Wistar rats were randomly divided into four groups (n = 5 rats/group) as follows: control, ovariectomized (Ovx), diabetic (Dia, streptozotocin (STZ) 60 mg/kg; i.p.), and Ovx + Dia groups. ⋯ Treadmill exercise attenuated apoptosis-induced neuropathology in the Ovx and Dia groups and recovered AChE activity in the Dia group. Neuroprotective effects of treadmill exercise were mediated by inhibition of apoptosis. Moderate exercise protocol had no beneficial anti-apoptotic and neuroprotective effects in ovariectomized-diabetic rats.
-
The neurotrophin receptor p75 (p75NTR) is a circadian rhythm regulator and mediates cognitive deficits induced by sleep deprivation (SD). The soluble extracellular domain of p75NTR (p75ECD) has been shown to exert a neuroprotective function in Alzheimer's disease (AD) and depression animal models. Nevertheless, the role of p75ECD in SD-induced cognitive dysfunction is unclear. ⋯ The results revealed that peripheral supplementation of high-dose p75ECD-Fc (10 mg/kg) recovered the balance between Aβ and p75ECD in the hippocampus and rescued the cognitive deficits in SD mice. We also found that p75ECD-Fc ameliorated other pathologies induced by SD, including neuronal apoptosis, synaptic plasticity impairment and neuroinflammation. The current study suggests that p75ECD-Fc is a potential candidate for SD and peripheral supplementation of p75ECD-Fc may be a prospective preventive measure for cognitive decline in SD.
-
Tone-evoked synaptic excitation and inhibition are highly correlated in many neurons with V-shaped tuning curves in the primary auditory cortex of pentobarbital-anesthetized rats. In contrast, there is less correlation between spontaneous excitation and inhibition in visual cortex neurons under the same anesthetic conditions. However, it was not known whether the primary auditory cortex resembles visual cortex in having spontaneous excitation and inhibition that is less correlated than tone-evoked excitation and inhibition. ⋯ We use the ratio of the excitatory event rate to the inhibitory event rate, and the assumption that the excitatory and inhibitory synaptic currents can each be reasonably described as a filtered Poisson process, to estimate the maximum spontaneous excitatory-inhibitory correlation for each neuron. In a subset of neurons, we also measured tone-evoked excitation and inhibition. In neurons with V-shaped tuning curves, although tone-evoked excitation and inhibition were highly correlated, the spontaneous inhibitory event rate was typically sufficiently lower than the spontaneous excitatory event rate to indicate a lower excitatory-inhibitory correlation for spontaneous activity than for tone-evoked responses.
-
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disorder of the central nervous system (CNS) that frequently affects the optic nerve and spinal cord. Interleukin-6 (IL-6) is considered a key cytokine in the pathogenesis of NMOSD, and the level of IL-6 is significantly increased in the sera and cerebrospinal fluid (CSF) of patients with NMOSD. We have reported that the production of IL-6 depends on the JAK/STAT3 signaling pathway. ⋯ Then, Western blotting and immunocytochemistry showed that NMO-IgG can activate the intracellular NF-κB signaling pathway. Finally, it was found that S3633, an inhibitor of the NF-κB signaling pathway, can effectively inhibit the increase in IL-6 levels. These results prove that the production of IL-6 is partly mediated by the NF-κB signaling pathway, providing a potential effective strategy for targeted treatment of NMOSD.