Neuroscience
-
Fear memories allow animals to recognize and adequately respond to dangerous situations. The prelimbic cortex (PrL) is a crucial node in the circuitry that encodes contextual fear memory, and its activity is central for fear memory expression over time. However, while PrL has been implicated in contextual fear memory storage, the molecular mechanisms underlying its maintenance remain unclear. ⋯ Also, PKMζ inhibition in the PrL does not impair the maintenance of recent contextual fear memory. However, we found that inhibition of prelimbic PKMζ at a remote time point disrupts contextual fear memory maintenance, and that blocking GluA2-dependent removal of AMPARs prevents this impairment. Our results confirm the central role of PrL in fear memory and identify PKMζ-induced inhibition of GluA2-containing AMPAR endocytosis as a key mechanism governing remote contextual fear memory maintenance.
-
Stress alters memory. Understanding how and when acute stress improves or impairs memory is a challenge. Stressors can affect memory depending on a combination of factors. ⋯ To assess putative sources of the negative memory modulation effects induced during reconsolidation, current emotional state was evaluated immediately after Testing Session (day 7). An increase in arousal was revealed only when CPS was administered concurrently with memory reactivation-labilization. The possibility of integration during reconsolidation of independent associations of these emotive components in the trace is a critical factor in modulating neutral memories during reconsolidation by stressors.
-
Microglia are unique cells in the central nervous system (CNS), being considered a sub-type of CNS macrophage. These cells monitor nearby micro-regions, having roles that far exceed immunological and scavengering functions, being fundamental for developing, protecting and maintaining the integrity of grey and white matter. Microglia might become dysfunctional, causing abnormal CNS functioning early or late in the life of patients, leading to neurologic or psychiatric disorders and premature death in some patients. ⋯ Alzheimer Disease is the prototype of the neurodegenerative disorders associated with these TREM2 variants, named here the Microgliopathies Type II. Here, we review clinical, pathological and some molecular aspects of human diseases associated with primary microglia dysfunctions and briefly comment some possible therapeutic approaches to theses microgliopathies. We hope that our review might update the interesting discussion about the impact of intrinsic microglia dysfunctions in the genesis of some pathologic processes of the CNS.
-
The present paper provides a comprehensive review of latent extinction. In maze learning situations, latent extinction involves confining an animal to a previously reinforced goal location without food. When returned to the starting position after latent extinction, the animal typically shows a response decrement. ⋯ The hippocampus is critically involved in latent extinction, whereas other brain regions typically implicated in regular "response extinction" in the maze, such as the dorsolateral striatum, are not required for latent extinction. Similar to other kinds of learning, latent extinction requires NMDA receptor activity, suggesting the involvement of synaptic plasticity. Consistent with a multiple memory systems perspective, research on latent extinction supports the hypothesis that extinction learning is not a unitary process but rather there are different kinds of extinction learning mediated by distinct neural systems.
-
Anxiety disorders are the most frequent type of mental disorder. Threat-conditioning memory plays a central role in anxiety disorders, impacting complex cognitive systems by modifying behavioral responses to fearful stimuli and inducing an overestimation of potential threats. Here, we analyzed the reminder-dependent amnesia on physiological responses, unconditioned stimulus (US) expectancy ratings, and measures of cognitive bias towards the threat of a threat-conditioning memory. ⋯ Tasks targeting stimulus representation, valuation, and attentional bias towards threat were performed. We show that the reminder-dependent intervention with an HWM weakened memory retention as expressed in skin conductance response (SCR) and faded the representation and valuation towards the threat, but it did not affect US expectancy or attentional bias. Our findings provide evidence for the experimental psychopathology approach opening the possibility to weaken both Threat conditioning memory and the systems associated with the maintenance of anxiety features.