Neuroscience
-
Long noncoding RNA nuclear enriched abundant transcript 1 (lnc-NEAT1) is closely implicated in neurological diseases, while its implication in Alzheimer's disease (AD) is rarely reported. This study aimed to investigate the effect of lnc-NEAT1 knockdown on neuron injury, inflammation, and oxidative stress in AD, as well as its interaction with downstream targets and pathways. APPswe/PS1dE9 transgenic mice were injected with negative control or lnc-NEAT1 interference lentivirus. ⋯ In vitro experiments showed that lnc-NEAT1 knockdown decreased apoptosis and oxidative stress, improved cell viability, also activated CREB/BDNF and NRF2/NQO1 pathways in AD cellular model. Meanwhile, microRNA-193a knockdown showed the opposite effects, which also attenuated lnc-NEAT1 knockdown-mediated reduction in injury, oxidative stress, and CREB/BDNF and NRF2/NQO1 pathways of AD cellular model. In conclusion, lnc-NEAT1 knockdown reduces neuron injury, inflammation, and oxidative stress through activating microRNA-193a mediated CREB/BDNF and NRF2/NQO1 pathways in AD.
-
In this study, we examined infection with the highly neurovirulent GDVII, the less neurovirulent DA strains, and with a mutant DA, which lacks the L* protein (L*-1) involved in viral persistence and demyelinating disease, to analyze the direct effects of Theiler's murine encephalomyelitis virus (TMEV) replication using primary cultures of mouse brain hippocampal neurons. All viruses replicate in cultured neurons, with GDVII having the highest titers and L*-1 the lowest. Accordingly, all were positive for viral antigen staining 3 days postinfection (dpi), and DA and L*-1 were also positive after 12 dpi. ⋯ In addition, confocal analysis showed that L*-1-infected neurons exhibited a decrease in spine density. Treatment with poly (I:C), which is structurally related to dsRNA and is known to trigger IFN type I synthesis, reduced spine density even more. These results confirmed the use of mouse hippocampal neuron cultures as a model to study neuronal responses after TMEV infection, particularly in the formation of spine density.
-
Cerebral ischemia is one of the major problems threatening global health. Many of the cerebral ischemia survivors would suffer from the physical and cognitive disabilities for their whole lifetime. Cell based-therapies have been introduced as a therapeutic approach for alleviating ischemia-enforced limitations. ⋯ GAP-43 showed significant protein expression in microglia + pericytes and microglia M2 + pericytes groups compared to the control group. Conversely, IL-1 levels diminished in all of the pericytes microglia + pericytes, and microglia M2 + pericytes groups compared to the ischemic controls. Current study highlights efficiency of M2 microglia and pericytes combinatory transplantation therapeutic role on relieving ischemic stroke outcomes.