Neuroscience
-
Recent work has described express visuomotor responses (EVRs) on the upper limb. EVRs are directionally-tuned bursts of muscle activity that occur within 100 ms of visual stimulus appearance, facilitating rapid reaching. Rapid stepping responses are also important in daily life, and while there is evidence of EVR expression on lower limbs, it is unknown whether lower-limb EVRs are influenced by increased postural demands. ⋯ When occasionally present, EVRs in the anteromedial stepping condition preceded larger APAs and longer RTs. Thus, while EVRs in lower limbs can facilitate rapid stepping, their expression is normally suppressed when postural stability is low. Failing to appropriately suppress EVRs in such situations disrupts postural stability, necessitating larger compensatory APAs and leading to longer stepping RTs.
-
Spontaneous subarachnoid hemorrhage (SAH) is an acute neurologic emergency with poor outcomes, and mitochondrial dysfunction is known as one of the key pathological mechanisms underlying the SAH-induced early brain injury (EBI). 1-{3-[2-(1-benzothiophen-5-yl)ethoxy]propyl} azetidin-3-ol maleate (T817MA) is a newly synthesized neurotrophic compound that has been demonstrated to exert protective effects against brain injury. Here, we investigated the effect of T817MA in neuronal injury following experimental SAH both in vitro and in vivo. Primary cultured cortical neurons were treated with oxyhemoglobin (OxyHb) to mimic SAH in vitro, and T817MA at concentrations higher than 0.1 μM reduced OxyHb-induced neuronal injury. ⋯ Furthermore, treatment with T817MA in vivo significantly reduced brain damage and preserved neurological function in rats. The decreased expression of Fis-1 and Drp-1, as well as the increased expression of Arc and Sirt1 were also observed in vivo. Taken together, these data indicate that the neuroprotective agent T817MA protects against SAH-induced brain injury via Sirt1- and Arc-mediated regulation of mitochondrial dynamics.
-
Fluvastatin (FLV), the first synthetically derived 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, is a potent inhibitor of cholesterol biosynthesis. While its primary mechanism of action is to reduce cholesterol levels, there is some evidence suggesting that it may also have effects on K+ channels. However, the overall effects of fluvastatin on ionic currents are not yet well understood. ⋯ Our study presents compelling evidence indicating that FLV has the potential to impact both the amplitude and gating of the ion channels IK(erg) and Ih. We also provide credible evidence suggesting that this drug has the potential to modify the properties of action potentials and the afterhyperpolarization current in electrically excitable cells. However, the assumption that these findings translate to similar in-vivo results remains unclear.
-
Sensory difficulties represent a crucial issue in the life of autistic individuals. The diagnostic and statistical manual of mental disorders describes both hyper- and hypo-responsiveness to sensory stimulation as a criterion for the diagnosis autism spectrum disorders (ASD). Among the sensory domain affected in ASD, altered responses to tactile stimulation represent the most commonly reported sensory deficits. ⋯ Here we investigated the gene expression deregulation in the trigeminal ganglion (which directly receives tactile information from whiskers) in two genetic models of syndromic autism (Shank3b and Cntnap2 mutant mice) at both adult and juvenile ages. We found several neuronal and non-neuronal markers involved in inhibitory, excitatory, neuroinflammatory and sensory neurotransmission to be differentially regulated within the trigeminal ganglia of both adult and juvenile Shank3b and Cntnap2 mutant mice. These results may help in disentangling the multifaced complexity of sensory abnormalities in autism and open avenues for the development of peripherally targeted treatments for tactile sensory deficits exhibited in ASD.