Neuroscience
-
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by the progressive cognitive decline. Among the various clinical symptoms, neuropsychiatric symptoms (NPS) commonly occur during the course of AD. Previous researches have demonstrated a strong association between NPS and severity of AD, while the research methods are not sufficiently intuitive. ⋯ According to the experimental results, our model achieves an accuracy of 0.91 and an area under the curve of 0.97 in the task of classifying AD and cognitively normal individuals. SHapley Additive exPlanations are used to visually exhibit the contribution of specific NPS in the proposed model. Among all behavioral symptoms, apathy plays a particularly important role in the diagnosis of AD, which can be considered a valuable factor in further studies, as well as clinical trials.
-
Fluvastatin (FLV), the first synthetically derived 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, is a potent inhibitor of cholesterol biosynthesis. While its primary mechanism of action is to reduce cholesterol levels, there is some evidence suggesting that it may also have effects on K+ channels. However, the overall effects of fluvastatin on ionic currents are not yet well understood. ⋯ Our study presents compelling evidence indicating that FLV has the potential to impact both the amplitude and gating of the ion channels IK(erg) and Ih. We also provide credible evidence suggesting that this drug has the potential to modify the properties of action potentials and the afterhyperpolarization current in electrically excitable cells. However, the assumption that these findings translate to similar in-vivo results remains unclear.
-
Spontaneous subarachnoid hemorrhage (SAH) is an acute neurologic emergency with poor outcomes, and mitochondrial dysfunction is known as one of the key pathological mechanisms underlying the SAH-induced early brain injury (EBI). 1-{3-[2-(1-benzothiophen-5-yl)ethoxy]propyl} azetidin-3-ol maleate (T817MA) is a newly synthesized neurotrophic compound that has been demonstrated to exert protective effects against brain injury. Here, we investigated the effect of T817MA in neuronal injury following experimental SAH both in vitro and in vivo. Primary cultured cortical neurons were treated with oxyhemoglobin (OxyHb) to mimic SAH in vitro, and T817MA at concentrations higher than 0.1 μM reduced OxyHb-induced neuronal injury. ⋯ Furthermore, treatment with T817MA in vivo significantly reduced brain damage and preserved neurological function in rats. The decreased expression of Fis-1 and Drp-1, as well as the increased expression of Arc and Sirt1 were also observed in vivo. Taken together, these data indicate that the neuroprotective agent T817MA protects against SAH-induced brain injury via Sirt1- and Arc-mediated regulation of mitochondrial dynamics.
-
The aim of this study was to investigate the otoprotective effects of Quercetin (Que) against both noise-induced hearing loss (NIHL) and the ototoxicity of silver nanoparticles (SNPs) in rats. Forty-two male Wistar rats were divided into seven groups (n = 6): control, SNPs, Que (100 mg/kg) plus SNPs (100 mg/kg), noise (104 dB), Que plus noise, noise plus SNPs, and noise plus Que plus SNPs. In the weight change results, there was no significant difference between the groups exposed to noise plus SNPs and SNPs compared to the control group. ⋯ Que also decreased the levels of TACT, MDA, IL-6, TNF-α, and NOX3 in the groups exposed to noise and SNPs and increased the SOD level and expression of myosin heavy chain VII (MYH7) and β-tubulin III (TUBB3) proteins. Furthermore, Que decreased structural changes in the animals' cochlea. Our findings indicate that pretreatment with Que efficiently counteracted the adverse effects of noise and SNPs on inner hair cell, outer hair cell, and nerve cells, which are responsible for high-frequency perception.