Neuroscience
-
Chemotherapy-induced peripheral neuropathy is one of the most common side effects of anticancer therapy. It is anticipated that chemotherapies with different mechanisms of action may affect somatosensory neurons differently. This study aimed to explore similar and differential etiologies of oxaliplatin- and paclitaxel-induced neuropathy by comparing the transcriptomes of dorsal root ganglia (DRGs). ⋯ However, 28 out of 29 terms were oppositely modulated. This study suggests that distinct mechanisms underly paclitaxel- and oxaliplatin-induced neuropathy. Paclitaxel might directly affect somatosensory neurons while oxaliplatin primarily targets dividing cells and immune cells.
-
Kainic acid (KA), an analogue of the excitatory neurotransmitter glutamate, when administered systemically can trigger seizures and neuronal loss in a manner that mirrors the neuropathology of human mesial temporal lobe epilepsy (mTLE), which affects ∼50 million people globally. Evidence suggests that changes in astrocytes which precede neuronal damage play an important role in the degeneration of neurons and/or development of seizures in TLE pathogenesis. Additionally, a role for microtubule associated tau protein, involved in various neurodegenerative diseases including Alzheimer's disease, has also been suggested in the development of seizure and/or neurodegeneration in TLE pathogenesis. ⋯ Concurrently, the total (Tau1 and Tau5) and phospho-tau (AT270 and PHF1) levels are transiently enhanced following KA administration. Furthermore, the level/expression of cleaved-tau, which is apparent in a subset of GFAP-, S100B- and A2-positive astrocytes, are increased in KA-treated rats. These results, taken together, suggest a differential role for various astrocytic subpopulations and tau protein in the development of seizure and/or loss of neurons in KA model of TLE and possibly in human mTLE pathogenesis.
-
MMG22 is a bivalent ligand containing MOR agonist and mGluR5 antagonist pharmacophores connected by a 22-atom linker. Intrathecal (i.t.) administration of MMG22 to inflamed mice has been reported to produce fmol-range antinociception in the reversal of LPS-induced hyperalgesia. MMG22 reduced hyperalgesia in the spared nerve injury (SNI) model of neuropathic pain at 10 days after injury but not at 30 days after injury, perhaps related to the inflammation that occurs early after injury but subsequently subsides. ⋯ We propose that MMG22 induces the formation of a MOR-mGluR5 heteromer through selective interaction with the upregulated NR2B subunit of activated NMDAR, in view of the 4600-fold reduction of i.t. MMG22 antinociception by the selective NR2B antagonist, Ro25-6981. A possible explanation for the substantially reduced potency for MMG22 in the SNI model is discussed.
-
We accurately sense locations of objects touching various points on the body and, if they are irritants, make accurate rapid movements to remove them. Such movements require accurate proprioception of orientation and motion of the reaching limb and of the target. However, it is unknown whether acuity of these sensations is similar for different points on the body. ⋯ Mean errors for reaches to touch points on the left lower limb were least accurate (p < 0.05), with mean errors averaging 1.5-3.1 cm relative to movements made with vision. We conclude that there is high proprioceptive acuity for locations of points on axial structures and the left upper limb including the digits, which contrasts with previous reports of greatly distorted proprioceptive maps of the face/head and hand. Apparently low proprioceptive acuity for points on the leg may be task sensitive as many lower limb motor tasks can be performed accurately without vision.
-
Years before Alzheimer's disease (AD) is diagnosed, patients experience an impaired sense of smell, and β-amyloid plaques accumulate within the olfactory mucosa and olfactory bulb (OB). The olfactory vector hypothesis proposes that external agents cause β-amyloid to aggregate and spread from the OB to connected downstream brain regions. To reproduce the slow accumulation of β-amyloid that occurs in human AD, we investigated the progressive accumulation of β-amyloid across the brain using a conditional mouse model that overexpresses a humanized mutant form of the amyloid precursor protein (hAPP) in olfactory sensory neurons. ⋯ We also observe reduced OB volumes in these mice when hAPP expression begins prior-to but not post-weaning which we tracked using manganese-enhanced MRI. We therefore conclude that the reduced OB volume does not represent progressive degeneration but rather disrupted OB development. Overall, our data demonstrate that hAPP expression in the olfactory epithelium can lead to the accumulation and spread of β-amyloid through the olfactory system into the hippocampus, consistent with an olfactory system role in the early stages of β-amyloid-related AD progression.