Neuroscience
-
The Stroop test is a widely used neuropsychological test measuring attention and conflict resolution, which shows sensitivity across a range of diseases, including Alzheimer's, Parkinson's and Huntington's diseases. A rodent analogue of the Stroop test, the Response-Conflict task (rRCT), allows for systematic investigation of the neural systems underpinning performance in this test. Little is known about the involvement of the basal ganglia in this neural process. ⋯ Involvement of the basal ganglia in this neural process has not previously been reported. These data demonstrate that the cognitive process of conflict resolution requires not only prefrontal cortical regions, but also recruits the dysgranular retrosplenial cortex and the medial region of the neostriatum. These data have implications for understanding the neuroanatomical changes that underpin impaired Stroop performance in people with neurological disorders.
-
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by decreased learning ability and memory deficits. Our previous findings suggested that benzene, 1,2,4-trimethoxy-5-(2-methyl-1-propen-1-yl) (BTY) can ameliorate the dysfunction of GABAergic inhibitory neurons associated with neurological diseases. On this basis, we investigated the neuroprotective effect of BTY on AD and explored the underlying mechanism. ⋯ Besides, histopathological experiments indicated that BTY could maintain the morphology and function of neurons, reduce amyloid β-protein 42 (Aβ42) and phosphorylated tau (p-tau) accumulation, and decrease the levels of inflammatory cytokines. Finally, western blot experiments showed that BTY could inhibit the expression of apoptosis-related proteins and promote the expression of memory-related proteins. In conclusion, this study indicated that BTY may be a promising drug candidate for AD.
-
Parkinson's disease (PD) is the fastest-growing neurodegenerative disease, with pathogenic causes elusive and short of effective treatment options. Investigations have found that dairy products positively correlate with the onset of PD, but the mechanisms remain unexplored. As casein is an antigenic component in dairy products, this study assessed if casein could exacerbate PD-related symptoms by stimulating intestinal inflammation and unbalanced intestinal flora and be a risk factor for PD. ⋯ Therefore, our results suggested that casein could reactivate dopaminergic nerve injury and intestinal inflammation and exacerbate intestinal flora disorder and its metabolites in convalescent PD mice. These damaging effects might be related to disordered protein digestion and gut microbiota in these mice. These findings will provide new insights into the impact of milk/dairy products on PD progression and supply information on dietary options for PD patients.
-
Syntaxin-binding protein 1 (STXBP1, also known as Munc18-1) regulates exocytosis as a chaperone protein of Syntaxin1A. The haploinsufficiency of STXBP1 causes early infantile-onset developmental and epileptic encephalopathy, known as STXBP1 encephalopathy. Previously, we reported impaired cellular localization of Syntaxin1A in induced pluripotent stem cell-derived neurons from an STXBP1 encephalopathy patient harboring a nonsense mutation. ⋯ These proteins colocalized at the tip of the growth cone and axons in primary cultured hippocampal neurons. Furthermore, RNAi-mediated gene silencing in Neuro2a cells showed that STXBP1 and Myosin Va were required for membrane trafficking of Syntaxin1A. In conclusion, this study proposes a potential role of STXBP1 in the trafficking of the presynaptic protein Syntaxin1A to the plasma membrane in conjunction with Myosin Va.
-
Apolipoprotein E (apoE, protein; APOE, gene), divided into three alleles of E2, E3 and E4 in humans, is associated with the progression of white matter lesion load. However, mechanism evidence has not been reported regarding the APOE genotype in early white matter injury (WMI) under subarachnoid hemorrhage (SAH) conditions. In the present study, we investigated the effects of APOE gene polymorphisms, by constructing microglial APOE3 and APOE4-specific overexpression, on WMI and underlying mechanisms of microglia phagocytosis in a mice model of SAH. ⋯ The increased ROS and aggravating mitochondrial damage demonstrated that the damaging effects of APOE4 in SAH may be associated with microglial oxidative stress-dependent mitochondrial damage. Inhibiting mitochondrial oxidative stress by Mitoquinone (mitoQ) can enhance the phagocytic function of microglia. In conclusion, anti-oxidative stress and phagocytosis protection may serve as promising treatments in the management of SAH.