Neuroscience
-
Alzheimer's disease (AD) is the most common cause of dementia and is caused by various factors including amyloid-beta (Aβ) aggregation. We investigated the pharmacological effects of the ethanol extract of Potentilla fragarioides var. major (Rosaceae) (EEPF) on AD-related pathogenesis, which remain elusive. We observed the effects of EEPF on Aβ disaggregation and free-radical scavenging activities for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) using in vitro assays, evaluated the effects of EEPF on memory loss in two animal models, and examined the molecular regulatory mechanisms of EEPF using an antibody-protein microarray in EEPF-treated neuronal cell lines. ⋯ In lipopolysaccharide (LPS)-stimulated BV-2 microglia, EEPF significantly inhibited LPS-induced production of inflammatory factors, such as nitric oxide, prostaglandin E2, tumor necrosis factor-α, and interleukin-6, and decreased the phosphorylation of Smad3 and cyclin D3. High-performance liquid chromatography confirmed that EEPF has five major components: neochlorogenic acid, chlorogenic acid, polydatin, isochlorogenic acid A, and buddleoside, with amounts ranging across 1.91-9.41 mg/g. EEPF may be a promising drug for treatment of AD and AD-related brain disorders.
-
Olfactory dysfunction is an early sign of such neurodegenerative diseases as Parkinson's (PD) and Alzheimer's (AD), and is often present in Mild Cognitive Impairment (MCI), a precursor of AD. Understanding neuro-temporal relationships, i.e., functional connectivity, between olfactory eloquent structures in such disorders, could shed light on their basic pathophysiology. To this end, we employed region-based analyses using resting-state functional magnetic resonance imaging (rs-fMRI) obtained from cognitively normal (CN), MCI, and PD patients with cognitive impairment (PD-CogImp). ⋯ Regardless of study group, males showed significantly higher connectivity than females in connections involving the orbitofrontal cortex. The logistic regression model trained using the top discriminatory features revealed that caudate was the most involved olfaction-related brain structure (accuracy = 0.88, Area under the Receiver operator characteristic curve of 0.90). In aggregate, our study demonstrates that resting functional connectivity among olfactory eloquent structures has potential value in better understanding the pathophysiology of several neurodegenerative diseases.
-
Observational Study
The presence of cognitive impairments in the acute phase of traumatic upper limb injuries: A cross-sectional observational study.
The purpose of this study was to investigate the association between cognitive impairments and traumatic upper limb injuries of the acute phase. ⋯ Traumatic nerve injury to the upper limb appears to be associated with both short-term memory and executive function impairment, whereas musculoskeletal injuries without nerve damage showed no cognitive impairment. Therefore, it is important to monitor cognitive function following upper limb nerve injuries.
-
Major depressive disorder (MDD) is a leading global cause of disability, being more prevalent in females, possibly due to molecular and neuronal pathway differences between females and males. However, the connection between transcriptional changes and MDD remains unclear. ⋯ Females showed notable RNA splicing and export process disruptions in the orbitofrontal cortex, alongside altered DDX39B gene expression in five of the six brain regions in both sexes. Our findings suggest that disruptions in RNA processing pathways may play a vital role in MDD.
-
Conditioned taste aversion (CTA) is a robust associative learning; liquid deprivation during this conditioning allows researchers to obtain readable measures of associative learning. Recent research suggests that thirst could be a crucial motivator that modulates conditioning and memory extinction processes, highlighting the importance of the body's internal state during learning. Furthermore, the histaminergic system is one of the major modulatory systems controlling several behavioral and neurobiological functions, such as feeding, water intake, and nociception. ⋯ According to our findings, the degree of liquid satiety differentially affected taste-aversive memory formation, and H3 histamine receptors were more involved under water deprivation conditions during acquisition. However, these receptors modulated the strength of aversive conditioning by altering the rate of aversive memory extinction in the absence of deprivation. In conclusion, histaminergic activity in the IC may influence taste memory dynamics through different mechanisms depending on the degree of liquid satiety or deprivation during conditioning.