Neuroscience
-
Vitamin A (VA) has many functions in the body, some of which are key for the development and functioning of the nervous system, while some others might indirectly influence neural function. Both hypovitaminosis and hypervitaminosis A can lead to clinical manifestations of concern for individuals and for general global health. Scientific evidence on the link between VA and autism spectrum disorder (ASD) is growing, with some clinical studies and accumulating results obtained from basic research using cellular and animal models. ⋯ However, it is important to recognize that ASD is a highly heterogeneous condition. Therefore, it is important to clarify how and when VA supplementation can be of benefit for affected individuals. Here we delve into the relationship between VA and ASD, discussing clinical observations and mechanistic insights obtained from research on selected autistic syndromes and laboratory models to advance in defining how the VA signaling pathway can be exploited for treatment of ASD.
-
Highly prevalent in laboratory rodents, 'social' hetero-grooming behavior is translationally relevant to modeling a wide range of neuropsychiatric disorders. Here, we comprehensively evaluated all known to date mouse genes linked to aberrant hetero-grooming phenotype, and applied bioinformatics tools to construct a network of their established protein-protein interactions (PPI). ⋯ Using additional bioinformatics analyses, we further identified 'central' (hub) proteins within these molecular clusters, likely key for mouse hetero-grooming behavior. Overall, a more comprehensive characterization of intricate molecular pathways linked to aberrant rodent grooming may markedly advance our understanding of underlying cellular mechanisms and related neurological disorders, eventually helping discover novel targets for their pharmacological or gene therapy interventions.
-
Transcranial magnetic stimulation (TMS) combined with electroencephalography (EEG), TMS-EEG, is a useful neuroscientific tool for the assessment of neurophysiology in the human cerebral cortex. Theoretically, TMS-EEG data is expected to have a better data quality as the number of stimulation pulses increases. However, since TMS-EEG testing is a modality that is examined on human subjects, the burden on the subject and tolerability of the test must also be carefully considered. ⋯ This is the first substantial study to examine the appropriate number of stimulus pulses that are reasonable and feasible for TMS-EEG testing of the DLPFC.
-
Nerve injury can not only lead to sensory and motor dysfunction, but also be complicated with neuropathic pain (NPP), which brings great psychosomatic injury to patients. At present, there is no effective treatment for NPP. Based on the functional characteristics of cell transplantation in nerve regeneration and injury repair, cell therapy has been used in the exploratory treatment of NPP and has become a promising treatment of NPP. ⋯ It can effectively relieve pain by repairing the injured nerve and rebuilding the nerve function. At present, some preclinical and clinical studies have shown that some encouraging results have been achieved in NPP treatment based on cell transplantation. Therefore, we discussed the feasible strategy of cell transplantation as a treatment of NPP and the problems and challenges that need to be solved in the current application of cell transplantation in NPP therapy.
-
Early childhood serves as a critical period for neural development and skill acquisition when children are extremely susceptible to the external environment and experience. As a crucial experiential stimulus, physical activity is believed to produce a series of positive effects on brain development, such as cognitive function, social-emotional abilities, and psychological well-being. The World Health Organization recommends that children engage in sufficient daily physical activity, which has already been strongly advocated in the practice of preschool education. ⋯ Therefore, we hypothesized that serotonin emerges as a pivotal transmitter that mediates the relationship between physical activity and brain development during early childhood. Further systematic reviews and meta-analyses are needed to specifically explore whether the type, intensity, dosage, duration, and degree of voluntariness of PA may affect the role of serotonin in the relationship between physical activity and brain function. This review not only helps us understand the impact of exercise on development but also provides a solid theoretical basis for increasing physical activity during early childhood.