Neuroscience
-
Alzheimer's disease (AD) is characterized by accumulation of amyloid beta (Aβ) and hyperphosphorylated tau (Tau-P) in the brain. Aβ enhances the activity of kinases involved in the formation of Tau-P. Phosphorylation at Thr 181 determines the propagation of multiple tau phosphorylations. Aβ is derived from the amyloid precursor protein (APP). Cleavage of APP by β-secretase also initiates release of heparan sulfate (HS) from the proteoglycan glypican-1 (GPC1). ⋯ The increased release of GPC1-derived HS may interfere with Aβ formation and/or Aβ interaction with tau.
-
Decision-making is a cognitive process, in which participants need to attend to relevant information and ignore the irrelevant information. Previous studies have described a set of cortical areas important for attention. It is unclear whether subcortical areas also serve a role. ⋯ We found that decreased neural activities in STN were associated with sustained attention. By examining connectivity across STN and various sub-regions of the prefrontal cortex (PFC), we found that decreased connectivity across areas was associated with sustained attention. Our results indicated that decreased STN activities were associated with sustained attention, and the STN-PFC circuit supported this process.
-
The classic renin-angiotensin system (RAS) induces organ damage, while the ACE2/Ang-(1-7)/MasR axis opposes it. However, the role of ACE2 in the brain is unclear. We studied ACE2's role in the brain. ⋯ The RAS axis regulates inflammation and oxidative stress to maintain CNS function, suggesting potential targets for neurologic disease treatment. Understanding microglial RAS activation can offer new therapeutic strategies.
-
The gastrointestinal tract exhibits coordinated muscle motility in response to food digestion, which is regulated by the central nervous system through autonomic control. The insular cortex is one of the brain regions that may regulate the muscle motility. In this study, we examined whether, and how, the insular cortex, especially the posterior part, regulates gastrointestinal motility by recording jejunal myoelectrical signals in response to feeding in freely moving male rats. ⋯ This increase in the jejunal myoelectrical signals was abolished by vagotomy and pharmacological inhibition of the posterior insular cortex. Additionally, feeding induced a decrease and increase in sympathetic and parasympathetic nervous activities, respectively, both of which were eliminated by posterior insular cortical inhibition. These results suggest that the posterior insular cortex regulates jejunal motility in response to feeding by modulating autonomic tone.
-
N6-methyladenosine (m6A) is one of the most extensive RNA methylation modifications in eukaryotes and participates in the pathogenesis of numerous diseases including ischemic stroke. Peripheral blood neutrophils are forerunners after ischemic brain injury and exert crucial functions. This study aims to explore the transcriptional profiles of m6A modification in neutrophils of patients with ischemic stroke. ⋯ This study explored the RNA m6A methylation pattern in the neutrophils of ischemic stroke patients, indicating that it is an intervention target of epigenetic regulation in ischemic stroke.