Neuroscience
-
Our group previously demonstrated that short-term treatment with a standardized extract of Ginkgo biloba (EGb) changed fear-conditioned memory by modulating gene expression in the hippocampus, amygdaloid complex and prefrontal cortex. Although there are few controlled studies that support the long-term use of EGb for the prevention and/or treatment of memory impairment, the chronic use of Ginkgo is common. This study evaluated the effects of chronic treatment with EGb on the conditioned emotional response, assessed by the suppression of ongoing behavior and in the modulation of gene and protein expression. ⋯ Our results provide further evidence for the efficacy of EGb on memory. For the first time, we show that long-term treatment with the highest dose of EGb improves the fear memory and suggests that increased cAMP-responsive element-binding protein (CREB)-1 and glial fibrillary acidic protein (GFAP) mRNA and protein (P<0.001) in the dorsal hippocampus and amygdaloid complex and reduced growth and plasticity-associated protein 43 (GAP-43) (P<0.01) in the hippocampus are involved in this process. The fear memory/treatment-dependent changes observed in our study suggest that EGb might be effective for memory enhancement through its effect on the dorsal hippocampus and amygdaloid complex.
-
Rats were subjected to 90min of focal ischemia by occluding the left middle cerebral and both common carotid arteries. The dynamic changes in the formation of brain ischemic areas were analyzed by measuring the direct current (DC) potential and reduced nicotinamide adenine dinucleotide (NADH) fluorescence with ultraviolet irradiation. In the lidocaine group (n=10), 30min before ischemia, an intravenous bolus (1.5mg/kg) of lidocaine was administered, followed by a continuous infusion (2mg/kg/h) for 150min. ⋯ Although lidocaine administration did not attenuate the number of peri-infarct depolarizations during ischemia, the high-intensity area and infarct volume were significantly smaller in the lidocaine group both at the end of ischemia (78% of the control; P=0.046) and 24h later (P=0.02). A logistic regression analysis demonstrated a relationship between the duration of ischemic depolarization and histologic damage and revealed that lidocaine administration did not attenuate neuronal damage when the duration of depolarization was identical. These findings indicate that the mechanism by which lidocaine decreases infarct volume is primarily through a reduction of the brain area undergoing NADH fluorescence increases which closely correlates with depolarization.
-
An object that suddenly appears in the visual field should be quickly detected and responded to because it could be beneficial or harmful. The superficial layer of the superior colliculus (sSC) is a brain structure capable of such functions, as sSC neurons exhibit sharp transient spike discharges with short latency in response to the appearance of a visual stimulus. However, how transient activity is generated in the sSC is poorly understood. ⋯ The pause was observed even under this condition, suggesting that inhibitory input caused the pause. We further found that local application of a mixture of GABAA and GABAB receptor antagonists additively diminished the pause. These results indicate that GABAergic inputs produce transient ON responses by attenuating excitatory activity through the cooperative activation of GABAA and GABAB receptors, allowing sSC neurons to act as a saliency detector.
-
Iron abnormalities within the brain are associated with several rare but severe neurodegenerative conditions. There is growing evidence that more common systemic iron loading disorders such as hemochromatosis can also have important effects on the brain. To identify features that are common across different forms of hemochromatosis, we used microarray and real-time reverse transcription polymerase chain reaction (RT-PCR) to assess brain transcriptome profiles of transferrin receptor 2 mutant mice (Tfr2(mut)), a model of a rare type of hereditary hemochromatosis, relative to wildtype control mice. ⋯ Pathway analyses highlighted changes for genes relating to long-term depression (6.8-fold enrichment, p=5.4×10(-7)) and, to a lesser extent, long-term potentiation (3.7-fold enrichment, p=0.01), with generalized reductions in transcription of key genes from these pathways, which are involved in modulating synaptic strength and efficacy and are essential for memory and learning. The agreement across the models suggests the findings are robust and strengthens previous evidence that iron loading disorders affect the brain. Perturbations of brain phenomena such as long-term depression and long-term potentiation might partly explain neurologic symptoms reported for some hemochromatosis patients.
-
Adolescent experiences of social deprivation result in profound and enduring perturbations in adult behavior, including impaired sensorimotor gating. The behavioral deficits induced by adolescent social isolation in rats can be ameliorated by antipsychotic drugs blocking dopamine D2 receptors in the prefrontal cortex (PFC) or by chronic administration of a cannabinoid CB1 receptor antagonist. The patterning and abundance of D2 receptors in the PFC evolves concurrently with CB1 receptors through the period of adolescence. ⋯ There was no apparent change in the expression of CB1 or D2 receptors in presynaptic terminals. The D2 deficit therefore may be tempered by local CB1-mediated retrograde signaling. This suggests a biological mechanism whereby the adolescent social environment can persistently influence cortical dopaminergic activity and resultant behavior.