Neuroscience
-
A neural correlate for phrase boundary perception in language has recently been identified as a reliable and replicable brain effect. It is called the closure positive shift (CPS) and has an equivalent in the perception of music (music CPS). Nevertheless, either in language or in music, this component is elicited by phrase boundary embedded in sentence or melody. ⋯ With regard to the amplitude, we analyzed the CPS amplitude in every 100 ms time window. It was showed that phonological phrase boundary elicited higher CPS amplitude as compared to that evoked by couplet boundary in an earlier time window, whereas in a later time window both of them were lower than the CPS correlated to intonational phrase boundary. The present results further shape our understanding of the CPS component and its relation to the processes involved in prosodic phrasing.
-
Disruption of the GABAergic system has been implicated in multiple developmental disorders, including epilepsy, autism spectrum disorder and schizophrenia. The human gene encoding uPAR (PLAUR) has been shown recently to be associated with the risk of autism. The uPAR(-/-) mouse exhibits a regionally-selective reduction in GABAergic interneurons in frontal and parietal regions of the cerebral cortex as well as in the CA1 and dentate gyrus subfields of the hippocampus. ⋯ For all subunits, no changes were observed in forebrain regions where GABAergic interneuron numbers are normal. We propose that disrupted differentiation of GABAergic neurons specifically in frontal and parietal cortices leads to regionally-selective alterations in local circuitry and subsequent adaptive changes in receptor subunit composition. Future electrophysiological studies will be useful in determining how alterations in network activity in the cortex and hippocampus relate to the observed behavioral phenotype.
-
Recent findings suggest that the expression of hypothalamic-pituitary-adrenal (HPA) axis stress response adaptation in rats depends on top-down neural control. We therefore examined whether the medial prefrontal cortex (mPFC) modulates expression of stress response habituation. We transiently suppressed (muscimol microinfusion) or stimulated (picrotoxin microinfusion) mPFC neural activity in rats and studied the consequence on the first time response to psychological stress (restraint) or separately on the development and expression of habituation to repeated restraint. ⋯ In contrast, inactivation of the mPFC only on day 3, or on all 3 days did not interfere with the expression of habituation. We conclude that the mPFC can permit or disrupt expression of HPA-axis stress response habituation, and this control depends on alteration of neural activity within select brain regions. A possible implication of these findings is that the dysregulation of PFC activity associated with depression and post-traumatic stress disorder may contribute to impaired expression of stress-response adaptation and consequently exacerbation of those disorders.
-
Traumatic Brain Injury (TBI) is known to result in oxidative stress, and as variation at the Apolipoprotein E (APOE) gene has been shown to influence outcome following TBI, but through as yet unclear mechanisms, we used transgenic APOE mouse models to examine the relationship between APOE genotype and oxidative stress following TBI. We administered a controlled cortical impact (CCI) injury or sham injury to transgenic mice expressing either human APOE3 or APOE4 on a murine APOE-deficient background. RNA was prepared from the ipsilateral hippocampi and cortices retrieved at 24 h and 1 month post-TBI. ⋯ However, in an additional cohort of mice we isolated the ipsilateral hippocampi, cortices, and cerebella at 1 month after TBI or sham injury for immunohistochemical analysis of markers of oxidative stress: the formation and presence of carbonyls (indication of general oxidative modification), 3-nitrotyrosine (3NT; specific to protein modification), or 4-hydroxyl-2-nonenal (HNE; specific to lipid peroxidation). Although we observed significant increases in all three markers of oxidative stress in response to injury, and genotype was a significant factor for carbonyl and 3NT, we found no significant interaction between genotype and injury. This may be due to the overwhelming effect of injury compared to genotype in our ANOVA, but nonetheless suggests that an influence on oxidative stress response is not the primary mechanism behind the APOE-genotype dependent effects on outcome following TBI.
-
Neurotransmitter serotonin (5-HT) released from descending pain modulation pathways to the dorsal horn is crucial to spinal nociception processing. This study sought to gain insight into the modulatory roles of specific serotonin receptor subtypes in experimentally induced neuropathic pain. In rats subjected to spinal nerve ligation (SNL) surgery, we recorded field potentials evoked in the spinal dorsal horn by C fibre-input, during spinal superfusion with subtype-selective drugs. ⋯ Only after SNL, spinal superfusion with 5-HT1A- or 5-HT1B receptor-antagonists (S)-WAY 100135 (100 microM) or SB 224289 (100 microM), respectively, disinhibited C fibre-evoked potentials, whereas 5-HT2A or 5-HT2B receptor-antagonists 4F 4PP (100 microM) or SB 204741 (100 microM) depressed evoked potentials, suggesting tonic activity of all four subtypes as a consequence of experimental nerve injury. The present findings reveal profound subtype-specific changes in the functional modulatory activities of spinal serotonin receptors following peripheral nerve injury. In particular, spinal hyperexcitation promoted by receptors 5-HT2A and 5-HT2B is suggested as a novel pathogenic pathway contributing to neuropathic pain.