Neuroscience
-
We have previously demonstrated that cocaine- and amphetamine-regulated transcript (CART) peptide colocalizes with GABA, dynorphin, D1 receptors, and substance P in some neurons in the nucleus accumbens (NAcc). One of the main nuclei that receive accumbal efferents is the ventral pallidum (VP), and both dynorphin and substance P have been shown to be present in the cell bodies and terminals of this projection. Thus, we investigated whether CART peptide is also present in the VP in terminals that originate in the accumbens. ⋯ Using electron microscopic immunocytochemistry, we examined CART terminals in the VP and found that CART-immunoreactive terminals formed symmetric synapses consistent with inhibitory GABAergic synapses. These synapses closely resemble GABAergic synapses in the substantia nigra pars reticulata (SNr), another nucleus that receives some CART-containing accumbal efferents. Lastly, we found that intra-pallidal injection of CART 55-102 inhibited cocaine-induced locomotion, indicating that CART peptide in the VP can have functional effects.
-
CHL1 cooperates with PAK1-3 to regulate morphological differentiation of embryonic cortical neurons.
The cell adhesion molecule close homologue of L1 (CHL1) is important for apical dendritic projection and laminar positioning of pyramidal neurons in caudal regions of the cerebral cortex. The p21-activated kinase (PAK1-3) subfamily of serine/threonine kinases has also been implicated in regulating cell adhesion, migration, and morphology. Immunofluorescence staining in mouse embryonic brain showed that PAK1-3 was expressed in embryonic cortex and colocalized with CHL1 during neuronal migration and differentiation. ⋯ Expression of PAK1 AID in CHL1 mutant cortex inactivated PAK and caused embryonic cortical neurons to branch profusely in the intermediate zone (IZ) and cortical plate (CP). The number of nodes, terminals and length of leading processes/apical dendrites of CHL1 mutant embryos expressing PAK1 AID increased dramatically, compared to CHL1 mutants without PAK1 AID, or WT embryos with or without PAK1 AID. These findings suggest that CHL1 and PAK1-3 kinase cooperate, most likely in independent pathways, in regulating morphological development of the leading process/apical dendrite of embryonic cortical neurons.
-
Comparative Study
Intra- and inter-subject variability of high field fMRI digit maps in somatosensory area 3b of new world monkeys.
This study evaluates the intra- and inter-subject variability of digit maps in area 3b of anesthetized squirrel monkeys. Maps were collected using high field blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). BOLD responses to individual digit stimulations were mapped and their response properties (location, area of activation, % signal change, time to peak response) were compared within and across imaging sessions separated by up to 20 months. ⋯ These results confirm that BOLD activation maps of single digits in area 3b as characterized by activation center, signal amplitudes, and temporal profile are very stable. The activation sizes determined by various criteria are the most variable measure in this preparation, but adaptive statistical thresholding appears to yield the most stable and reproducible maps. This study serves as a baseline assessment of the limits imposed on the detection of plastic changes by experimental variations of the digit BOLD fMRI activation maps in normal animals, and as an indicator of the likely performance limits in human studies.
-
A critical period in respiratory network development occurs in the rat around postnatal days (P) 12-13, when abrupt neurochemical, metabolic, and physiological changes were evident. As serotonin and its receptors are involved in respiratory modulation, and serotonergic abnormality is implicated in sudden infant death syndrome, we hypothesized that 5-HT receptors are significantly downregulated during the critical period. ⋯ Optical densitometric analysis of immunohistochemically-reacted neurons from P2 to P21 indicated four developmental patterns of expression: (1) Pattern I: a high level of expression at P2-P11, an abrupt and significant reduction at P12, followed by a plateau until P21 (5-HT(1A)R and 5-HT(1B)R in raphé magnus [RM], raphé obscurus [ROb], raphé pallidus [RP], pre-Bötzinger complex [PBC], nucleus ambiguus [Amb], and hypoglossal nucleus [XII; 5-HT(1A)R only]). (2) Pattern II: a high level at P2-P9, a gradual decline from P9 to P12, followed by a plateau until P21 (5-HT(1A)R and 5-HT(1B)R in the retrotrapezoid nucleus (RTN)/parafacial respiratory group (pFRG)). (3) Pattern III: a high level at P2-P11, followed by a gradual decline until P21 (5-HT(1A)R in the ventrolateral subnucleus of solitary tract nucleus [NTS(VL)] and the non-respiratory cuneate nucleus [CN]). (4) Pattern IV: a relatively constant level maintained from P2 to P21 (5-HT(1A)R in the commissural subnucleus of solitary tract nucleus (NTS(COM)); 5-HT(1B)R in XII, NTS(VL), NTS(COM), and CN; and 5-HT(2A)R in RM, ROb, RP, RTN/pFRG, NTS(VL), and NTS(COM)). Thus, a significant reduction in the expression of 5-HT(1A)R, 5-HT(1B)R, and 5-HT(2A)R in multiple respiratory-related nuclei at P12 is consistent with reduced serotonergic transmission during the critical period, thereby rendering the animals less able to respond adequately to ventilatory distress.
-
We recently developed a procedure to study fear incubation in which rats given 100 tone-shock pairings over 10 days show low fear 2 days after conditioned fear training and high fear after 30 or 60 days. Here, we studied the role of the stress-related peptides, neuropeptide Y (NPY) and corticotropin-releasing factor (CRF), in fear incubation. We gave rats either 10 or 100 30-s tone-0.5-s footshock pairings over 1 day (short training) or 10 days (long training) and then assessed tone-cue-induced conditioned suppression of lever responding 2 days after short training or 2 days and 1 month after long training. ⋯ In contrast, D-Phe CRF(12-41), MTIP, BIBO3304, or BIIE0246 had no effect on conditioned fear at the different time points. Results confirm previous work on the potent effect of exogenous NPY administration on conditioned fear, but the negative results with BIBO3304 and BIIE0246 question whether endogenous NPY contributes to incubated (or non-incubated) fear. Results also suggest that CRF receptors are not involved in cue-induced fear in the conditioned suppression procedure.