Neuroscience
-
Over the past few decades, behavioral, neuroimaging and molecular studies of neurogenetic conditions, such as Williams, fragile X, Turner and velocardiofacial (22q11.2 deletion) syndromes, have led to important insights regarding brain development. These investigations allow researchers to examine "experiments of nature" in which the deletion or alteration of one gene or a contiguous set of genes can be linked to aberrant brain structure or function. Converging evidence across multiple imaging modalities has now begun to highlight the abnormal neural circuitry characterizing many individual neurogenetic syndromes. ⋯ In this review, we highlight converging evidence across syndromes from multiple neuroimaging modalities, with a particular emphasis on functional imaging. In addition, we discuss the commonalities and differences pertaining to selective deficits in visuospatial processing that occur across four neurogenetic syndromes. We suggest avenues for future exploration, with the goal of achieving a deeper understanding of the neural abnormalities in these affected populations.
-
In recent years, an array of brain mapping techniques has been successfully employed to link individual differences in circuit function or structure in the living human brain with individual variations in the human genome. Several proof-of-principle studies provided converging evidence that brain imaging can establish important links between genes and behaviour. ⋯ While the rapidly emerging field of imaging genetics holds great promise, the integration of genetic and neuroimaging data also poses major methodological and conceptual challenges. Therefore, this special issue also focuses on how these challenges can be met to fully exploit the synergism of genetically informed brain imaging.
-
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at (http://www.elsevier.com/locate/withdrawalpolicy.
-
The purpose of this work is to study the effect of catalpol, an iridoid from Rehmannia glutinosa on neurodegenerative changes induced by beta-amyloid peptide Abeta(25-35) or Abeta(25-35)+ibotenic acid and the underlying mechanism. Results showed that catalpol significantly improved the memory deficits in the neurodegenerative mouse model produced by injection of Abeta(25-35)+ibotenic acid to the nucleus magnocellularis basalis, yet it is neither a cholinesterase inhibitor nor a muscarinic (M) receptor agonist. Instead, the choline acetyl transferase (ChAT) activity and the M receptor density in brain were significantly decreased in the model mice and catalpol could significantly elevate their levels. ⋯ When the action of BDNF was inhibited by k252a in the cultured neurons, the protective effect of catalpol was completely (neurite outgrowth length) or partially (ChAT positive neuron number and the M receptor density) abolished. Taken together, catalpol improves memory and protects the forebrain neurons from neurodegeneration through increasing BDNF expression. Whether catalpol could reverse the neurodegenerative changes already present before its application remains to be further studied.
-
In many everyday settings, the relationship between our choices and their potentially rewarding outcomes is probabilistic and dynamic. In addition, the difficulty of the choices can vary widely. Although a large body of theoretical and empirical evidence suggests that dopamine mediates rewarded learning, the influence of dopamine in probabilistic and dynamic rewarded learning remains unclear. ⋯ The patients also exhibited compromised adaptability to the reversal. A computational model of the subjects' trial-by-trial choices demonstrated that the adaptability was sensitive to the gain with which patients weighted pre-reversal feedback. Collectively, the results implicate the nigral dopaminergic system in learning to make choices in environments with probabilistic and dynamic reward contingencies.