Neuroscience
-
Differential gene expression in the rat hippocampus during learning of an operant conditioning task.
Changes in transcription levels of brain-derived neurotrophic factor (BDNF), cyclic adenosine monophosphate (cAMP) response element binding (CREB), Synapsin I, Ca(2+)/calmodulin-dependent protein kinase II (CamKII), activity-regulated cytoskeleton-associated protein (Arc), c-jun and c-fos have been associated to several learning paradigms in different brain areas. In this study, we measured mRNA expression in the hippocampus by real time (RT)-PCR mRNA levels of BDNF, CREB, Synapsin I, CamKII, Arc, c-jun and c-fos, during learning and operant conditioning task. Experimental groups were as follows: control (C, the animals never left the bioterium), when the animals reached 50-65% of the expected response (Incompletely Trained, IT), when animals reached 100% of the expected response with a latency time lower than 5 s (Trained, Tr), Box Control of Incompletely Trained (BCIT), animals spent the same time as the IT in the operant conditioning box and Box Control of Trained (BCTr) animals spent the same time as the Tr in the operant conditioning box. ⋯ We found increments of mRNA levels of most genes (BDNF, CREB, Synapsin I, Arc, c-jun and c-fos) in IT and Tr groups compared to their box controls, but increments in Tr were smaller compared with IT. These results describe a differential gene expression in the rat hippocampus when the animals are learning and when animals have already learned. Taking together the results presented herein with the known functions of these genes, we propose a link between changes in gene expression in the hippocampus and different degrees of cellular activation and plasticity during learning of an operant conditioning task.
-
Endocannabinoids have a variety of effects by acting through cannabinoid 1 (CB1) receptors located throughout the brain. However, since CB1 receptors are located presynaptically, and because the strength of downstream coupling varies with brain region, expression studies alone do not provide a firm basis for interpreting sites of action. ⋯ Areas of interest demonstrate a drug interaction when the CB1 receptor inverse agonist, rimonabant, is co-administered. This analysis highlights the corticostriatal-hypothalamic pathway, which is central to the motivational drive to eat.
-
The purpose of this work is to study the effect of catalpol, an iridoid from Rehmannia glutinosa on neurodegenerative changes induced by beta-amyloid peptide Abeta(25-35) or Abeta(25-35)+ibotenic acid and the underlying mechanism. Results showed that catalpol significantly improved the memory deficits in the neurodegenerative mouse model produced by injection of Abeta(25-35)+ibotenic acid to the nucleus magnocellularis basalis, yet it is neither a cholinesterase inhibitor nor a muscarinic (M) receptor agonist. Instead, the choline acetyl transferase (ChAT) activity and the M receptor density in brain were significantly decreased in the model mice and catalpol could significantly elevate their levels. ⋯ When the action of BDNF was inhibited by k252a in the cultured neurons, the protective effect of catalpol was completely (neurite outgrowth length) or partially (ChAT positive neuron number and the M receptor density) abolished. Taken together, catalpol improves memory and protects the forebrain neurons from neurodegeneration through increasing BDNF expression. Whether catalpol could reverse the neurodegenerative changes already present before its application remains to be further studied.
-
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at (http://www.elsevier.com/locate/withdrawalpolicy.
-
Recent literature indicates that low-dose Methylene Blue (MB), an autoxidizable dye with powerful antioxidant and metabolic enhancing properties, might prevent neurotoxin-induced neural damage and associated functional deficits. This study evaluated whether local MB may counteract the anatomical and functional effects of the intrastriatal infusion of the neurotoxin rotenone (Rot) in the rat. To this end, stereological analyses of striatal lesion volumes were performed and changes in oxidative energy metabolism in the striatum and related motor regions were mapped using cytochrome oxidase histochemistry. ⋯ Finally, MB partially prevented the behavioral sensorimotor asymmetries elicited by Rot. These results are consistent with protective effects of MB against neurotoxic damage in the brain parenchyma. This study provides the first demonstration of the anatomical, metabolic and behavioral neuroprotective effects of MB in the striatum in vivo, and supports the notion that MB could be a valuable intervention against neural damage associated with oxidative stress and energy hypometabolism.