Neuroscience
-
Repeated, intermittent exposure to the psychomotor stimulants amphetamine and cocaine induces a progressive and enduring augmentation of their locomotor-activating effects, known as behavioral sensitization, which is accompanied by similarly stable adaptations in the dendritic structure of cortico-striatal neurons. We examined whether repeated exposure to the increasingly abused amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) also results in long-lasting behavioral and morphological changes in mesocortical (medial prefrontal cortex) and ventral striatal (nucleus accumbens) neurons. Rats received two daily injections of either 5.0 mg/kg (+/-)-MDMA or saline vehicle, approximately 6 h apart, for 3 consecutive days, followed by 4 drug-free days for a total of 3 weeks. ⋯ In medial prefrontal cortex, the prelimbic subregion showed increased spine density on distal dendrites of layer V pyramidal neurons, while the anterior cingulate subregion showed a change in the distribution of dendritic material instead. Collectively, our results show that long-lasting locomotor sensitization to MDMA is accompanied by reorganization of synaptic connectivity in limbic-cortico-striatal circuitry. The differential plasticity in cortical subregions, moreover, suggests that drug-induced structural changes are not homogeneous and may be specific to the circuitry underlying long-term changes in drug-seeking and drug-taking behavior.
-
The current study was conducted to examine the involvement of muscarinic acetylcholine receptors of the amygdala in morphine-induced state-dependent memory retrieval. Male Wistar rats implanted bilaterally with cannulas in the amygdala were submitted to a step-through type passive avoidance task, and tested 24 h after training to measure step-through latency. Post-training s.c. administration of morphine at the doses of 5 and 7.5 mg/kg impaired the memory on the test day, which was restored when the same doses of morphine were used as a pre-test drug. ⋯ In addition, no significant changes were seen in memory retrieval of the animals trained before saline treatment and tested following intra-amygdala microinjection of the same doses of scopolamine (0.0625, 0.125 and 0.25 microg/side). Bilateral microinjection of scopolamine into the amygdala reversed the pilocarpine-induced potentiation of the morphine response. In view of the known actions of the drugs used, the present data point to the involvement of amygdala muscarinic acetylcholine receptors in morphine-induced state-dependent memory retrieval.
-
Cocaine- and amphetamine-regulated-transcript (CART) peptides are associated with multiple physiological processes, including, feeding, body weight, and the response to drugs of abuse. CART mRNA and peptide levels and the expression of the CART gene appears to be under the control of a number of extra- and intra-cellular factors including the transcription factor, cAMP response element binding protein (CREB). Similar to the effects of CART, Ca(2+) signaling leads to the phosphorylation of CREB and has been associated with both feeding and the actions of psychostimulants; therefore, we hypothesized that Ca(2+) may play a role in CART gene regulation. ⋯ Western immunoblotting indicated that ionomycin increased phosphorylated cAMP response element binding protein (pCREB) levels and electrophoretic mobility shift assay/supershift assay using antibodies against pCREB demonstrated increased levels of a CART oligo/pCREB protein complex. Finally, we showed that injection of ionomycin into the rat nucleus accumbens increases CART mRNA levels. To our knowledge, this is the first study providing evidence that the CART gene is, in part, regulated by Ca(2+)/CaM/CREB-dependent cell signaling.
-
Comparative Study
Pretreatment with a single estradiol-17beta bolus activates cyclic-AMP response element binding protein and protects CA1 neurons against global cerebral ischemia.
Estradiol-17beta is released from the ovaries in a cyclic manner during the normal estrous cycle in rats. During the transition from the diestrous to proestrous stage, the 17beta-estradiol increases in blood circulation. We hypothesized that a higher serum level of endogenous 17beta-estradiol would protect hippocampal pyramidal neurons against global cerebral ischemia via activation of the cyclic-AMP response element binding protein (CREB)-mediated signaling cascade. ⋯ To test the efficacy of a single bolus of 17beta-estradiol before ischemia, ovariectomized rats were treated with 17beta-estradiol (5/10/50 microg/kg) or vehicle (oil) and 48/72/96 h later rats were exposed to cerebral ischemia. A single 17beta-estradiol bolus treatment in ovariectomized rats significantly increased CREB mRNA activation and protected CA1 pyramidal neurons against ischemia. These results suggest that an exogenous bolus of 17beta-estradiol to ovariectomized rats protects hippocampus against ischemia via activation of the CREB pathway in a manner similar to the endogenous estrous cycle.
-
The spinothalamic tract (STT) neurons in the spinal dorsal horn play an important role in transmission and processing of nociceptive sensory information. Although transient receptor potential vanilloid type 1 (TRPV1) receptors are present in the spinal cord dorsal horn, their physiological function is not fully elucidated. In this study, we examined the role of TRPV1 in modulating neuronal activity of the STT neurons through excitatory and inhibitory synaptic inputs. ⋯ The effect of capsaicin on mEPSC was also abolished by removal of external Ca(2+), but not by treatment with Cd(2+). Furthermore, capsaicin increased the firing activity of the STT neurons and this increase in neuronal activity by capsaicin was abolished in the presence of non-N-methyl-d-aspartic acid (NMDA) and NMDA receptor antagonists, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) and (R)-amino-5-phosphonovaleric acid (APV). These data suggest that activation of TRPV1 potentiates the glutamate release from excitatory terminals of primary afferent fibers and subsequently increases the neural activity of STT neurons of the rat spinal cord deep dorsal horn.