Neuroscience
-
Humans exposed prenatally to ethanol can exhibit brain abnormalities and cognitive impairment similar to those seen in patients expressing mutant forms of the L1 cell adhesion molecule (L1CAM). The resemblance suggests that L1CAM may be a target for ethanol, and consistent with this idea, ethanol can inhibit L1CAM adhesion in cell lines and L1CAM-mediated outgrowth and signaling in cerebellar granule neurons. ⋯ We find that ethanol does not alter axonal polarization, L1CAM-dependent axon outgrowth or branching, or L1CAM recycling in axonal growth cones. Thus, ethanol inhibition of L1CAM is highly dependent on neuronal context.
-
At the optic chiasm retinal fibers either cross the midline, or remain uncrossed. Here we trace hemispheric pathways through the marmoset chiasm and show that fibers from the lateral optic nerve pass directly toward the ipsilateral optic tract without any significant change in fiber order and without approaching the midline, while those from medial regions of the nerve decussate directly. Anterograde labeling from one eye shows that the two hemispheric pathways remain segregated through the proximal nerve and chiasm with the uncrossed confined laterally. ⋯ Recently it has been shown that this distinction is not a true dichotomy between placental mammals and marsupials, as fiber order in tree shrews and humans mirrors the marsupial pattern. Architectural differences in the mature chiasm probably reflect different developmental mechanisms regulating pathway choice. Our results therefore suggest that both the organization and development of the primate optic chiasm differ markedly from that revealed in rodents and carnivores.
-
Episodic ataxia type 1 (EA1) is a rare human neurological syndrome characterized by continuous myokymia and attacks of generalized ataxia that can be triggered by abrupt movements, emotional stress and fatigue. An Italian family has been identified where related members displayed continuous myokymia, episodes of ataxia, attacks characterized by myokymia only, and neuromyotonia. ⋯ In addition, heteromeric channels resulting from the co-expression of wild-type Kv1.1 and Kv1.1(F414C), or wild-type Kv1.2 and Kv1.1(F414C) subunits displayed reduced current amplitudes and altered gating properties. This indicates that the pathogenic effect of this KCNA1 mutation is likely to be related to the defective functional properties we have identified.
-
This paper investigates the role of differences in adrenal cortical function on the proliferation rate of progenitor cells in the dentate gyrus of the hippocampus in adult Sprague-Dawley (SD) and Lister-Hooded (LH) male rats. SD rats had around 60% more cells labeled with Ki67 (an index of mitosis) than LH rats under basal conditions. Bilateral adrenalectomy (ADX) increased levels in both strains, but by unequal amounts, such that post-ADX numbers of Ki67-labeled cells were similar in both strains. ⋯ The activity of progenitor cells in either strain did not respond to daily i.p. injections of fluoxetine (10 mg/kg) for 14 days, but an equivalent dose administered by osmotic minipump stimulated proliferation in both by a similar proportional amount, such that strain differences persisted. S.c. implantation of a corticosterone pellet (75 mg), which flattens the diurnal rhythm in corticosterone, prevented fluoxetine delivered by minipump from activating progenitor cell mitosis in SD rats, as it had in the LH strain in a previous study. These results show that much, if not all, of the marked strain differences between SD and LH rats in progenitor cell activity, and hence rates of neurogenesis in the dentate gyrus may be ascribed to corresponding differences in adrenal cortical activity.
-
How the brain processes temporal information embedded in sounds is a core question in auditory research. This article synthesizes recent studies from our laboratory regarding neural representations of time-varying signals in auditory cortex and thalamus in awake marmoset monkeys. ⋯ These findings indicate that the auditory cortex forms internal representations of temporal characteristic structures. We suggest that such transformations are necessary for the auditory cortex to perform a wide range of functions including sound segmentation, object processing and multi-sensory integration.