Neuroscience
-
Although there is evidence that reduced inhibition in the spinal dorsal horn contributes to neuropathic pain, the mechanisms that underlie this are poorly understood. We have previously demonstrated that there is no loss of neurons from laminae I-III in the spared nerve injury (SNI) model [Polgár E, Hughes DI, Arham AZ, Todd AJ (2005) Loss of neurons from laminas I-III of the spinal dorsal horn is not required for development of tactile allodynia in the SNI model of neuropathic pain. J Neurosci 25:6658-6666]. ⋯ We found no difference in the intensity of immunolabeling for any of these markers on the two sides of the superficial dorsal horn. These results suggest that there is no significant loss of GABAergic boutons from the denervated area after SNI (which is consistent with the finding that neuronal death does not occur in this model) and that there is no depletion of GABA or GABA(A) receptors at GABAergic synapses within this region. An alternative explanation for disinhibition after nerve injury is that it results from reduced excitatory drive to GABAergic dorsal horn neurons following loss of primary afferent input to these cells.
-
Although circadian rhythms of males and females are different in a variety of ways in many species, their mechanisms have been primarily studied in males. Furthermore, rhythms are dramatically different in diurnal and nocturnal animals but have been studied predominantly in nocturnal ones. In the present study, we examined rhythms in one element of the circadian oscillator, the PER1 protein, in a variety of cell populations in brains of diurnal female grass rats. ⋯ In addition, rhythms were detected within populations of neuroendocrine cells that contain tyrosine hydroxylase. The phase of the rhythm within the SCN was advanced compared with that seen previously in male grass rats. Rhythms beyond the SCN were varied and different from those seen in most nocturnal species, suggesting that signals originating in the SCN are modified by its direct and/or indirect targets in different ways in nocturnal and diurnal species.
-
Cortical surface evoked potentials (SEPs) are larger during sleep and characterize a sleep-like state in cortical columns. Since tumor necrosis factor alpha (TNF) may be involved in sleep regulation and is produced as a consequence of waking activity, we tested the hypothesis that direct application of TNF to the cortex will induce a sleep-like state within cortical columns and enhance SEP amplitudes. We found that microinjection of TNF onto the surface of the rat somatosensory cortex enhanced whisker stimulation-induced SEP amplitude relative to a control heat-inactivated TNF microinjection. ⋯ In two separate studies, unilateral deflection of multiple whiskers for 2 h increased the number of TNF-IR cells in layers II-V in columns that also exhibited enhanced cellular ongogene (Fos-IR). TNF-IR also colocalized with NeuN-IR suggesting that TNF expression was in neurons. Collectively these data are consistent with the hypotheses that TNF is produced in response to neural activity and in turn enhances the probability of a local sleep-like state as determined by increases in SEP amplitudes.
-
In recent years a role for EphB receptor tyrosine kinases and their ephrinB ligands in activity-dependent synaptic plasticity in the CNS has been identified. The aim of the present study was to test the hypothesis that EphB receptor activation in the adult rat spinal cord is involved in synaptic plasticity and processing of nociceptive inputs, through modulation of the function of the glutamate ionotropic receptor NMDA (N-methyl-D-aspartate). In particular, EphB receptor activation would induce phosphorylation of the NR2B subunit of the NMDA receptor by a Src family non-receptor tyrosine kinase. ⋯ Furthermore animals pre-treated with PP2 did not develop behavioral thermal hyperalgesia following EphrinB2-Fc administration, suggesting that this pathway is functionally significant. Indeed, EphB1-Fc administration, which competes with the endogenous receptor for ephrinB2 binding and prevents behavioral allodynia and hyperalgesia in the carrageenan model of inflammation, also inhibited NR2B phosphorylation in this model. Taken together these findings support the hypothesis that EphB-ephrinB interactions play an important role in NMDA-dependent, activity-dependent synaptic plasticity in the adult spinal cord, inducing the phosphorylation of the NR2B subunit of the receptor via Src family kinases, thus contributing to chronic pain states.
-
The etiology of idiopathic Parkinson's disease is thought to involve interplay between environmental factors and predisposing genetic traits, although the identification of genetic risk factors remain elusive. The neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP) produces parkinsonian-like symptoms and pathology in mice and humans. As sensitivity to MPTP is genetically determined in mice this provides an opportunity to identify genes and biological mechanisms that modify the response to an exogenous agent that produces a Parkinson's disease-like condition. ⋯ Rather, we suggest that the compromised nerve terminals elicit longer lasting transcriptional responses in surrounding cells involving production of molecules that feedback on the terminals to cause additional damage that results in cell death. In Swiss Webster, resistance lies upstream in the cascade of events triggered by MPTP and uncouples the acute events elicited by MPTP from the damaging secondary responses. In contrast, in Bax-/- mice resistance lies downstream in the cascade and suggests enhanced tolerance to the secondary insult rather than its attenuation.