Neuroscience
-
DYT1 dystonia is caused by a single GAG deletion in exon 5 of TOR1A, the gene encoding torsinA, a putative chaperone protein. In this study, central and peripheral nervous system perturbations (transient forebrain ischemia and sciatic nerve transection, respectively) were used to examine the systems biology of torsinA in rats. After forebrain ischemia, quantitative real-time reverse transcriptase-polymerase chain reaction identified increased torsinA transcript levels in hippocampus, cerebral cortex, thalamus, striatum, and cerebellum at 24 h and 7 days. ⋯ However, increased torsinA immunoreactivity was localized to both ganglion cells and satellite cells in ipsilateral DRG but was restricted to satellite cells contralaterally. These results suggest that torsinA participates in the response of neural tissue to central and peripheral insults and its sustained up-regulation indicates that torsinA may contribute to remodeling of neuronal circuitry. The striking induction of torsinA in astrocytes and satellite cells points to the potential involvement of glial elements in the pathobiology of DYT1 dystonia.
-
Current cognitive models suggest that the processing of dynamic facial attributes, including social signals such as gaze direction and facial expression, involves the superior temporal sulcus, whereas the processing of invariant facial structure such as the individuals' identity involves the fusiform face area. Where facial attractiveness, a social signal that may emerge from invariant facial structure, is processed within this dual-route model of face perception is uncertain. Here, we present two studies. ⋯ Second, we performed a functional magnetic resonance imaging study in healthy subjects that included an implicit and explicit processing of facial attractiveness. We found increased neural activity when explicitly judging facial attractiveness within a number of cortical regions including the fusiform face area, but not the superior temporal sulcus, indicating a potential contribution of the fusiform face area to this judgment. Thus, converging neuropsychological and neuroimaging evidence points to a critical role of the inferior occipitotemporal cortex in the processing of facial attractiveness.
-
Cytidine-5-diphosphocholine (CDP-choline or citicholine) is an essential molecule that is required for biosynthesis of cell membranes. In adult humans it is used as a memory-enhancing drug for treatment of age-related dementia and cerebrovascular conditions. However the effect of CDP-choline on perinatal brain is not known. ⋯ However significant increases in neurite length, branch points and total area occupied by the neurons were observed. We conclude that exogenous supplementation of CDP-choline during development causes stable changes in neuronal morphology. Significant increase in dendritic growth and branching of pyramidal neurons from the somatosensory cortex resulted in enlarging the surface area occupied by the neurons which we speculate will augment processing of sensory information.
-
Lipoprotein lipase (LPL), which plays an essential role in plasma lipoprotein metabolism and transportation, appears to be a risk factor for ischemic vascular diseases. Several studies have recently reported the presence of relationship between HindIII, PvuII, Ser447Ter (C-->G) polymorphisms of LPL and ischemic vascular diseases. ⋯ Our study suggests that PvuII and Ser447Ter polymorphisms are associated with lipid profile and CI.