Neuroscience
-
Nervous system formation integrates control of cellular proliferation and differentiation and is mediated by multipotent neural progenitor cells that become progressively restricted in their developmental potential before they give rise to differentiated neurons and glial cells. Evidence from different experimental systems suggests that Geminin is a candidate molecule linking proliferation and differentiation during nervous system development. We show here that Geminin and its binding partner Cdt1 are expressed abundantly by neural progenitor cells during early mouse neurogenesis. ⋯ Bromo-deoxy-uridine (BrdU) incorporation experiments reveal a cell cycle specific expression in neural progenitor cells, with Geminin being present from S to M phase, while Cdt1 expression characterizes progenitor cells in G1 phase. Furthermore, in vitro differentiation of adult neurosphere cultures shows downregulation of Geminin/Cdt1 in the differentiated state, in line with our data showing that Geminin is present in neural progenitor cells of the CNS during mouse embryogenesis and adulthood and becomes downregulated upon cell fate specification and differentiation. This suggests a role for Geminin in the formation and maintenance of the neural progenitor cells.
-
Long-term memory formation depends on protein and mRNA synthesis that subserves synaptic reorganization. The removal of pre-existing inhibitory proteins by the ubiquitin-proteasome system (UPS) is proposed as a crucial step to support these modifications. The activation of the constitutive transcription factor nuclear factor kappaB (NF-kappaB) depends on the degradation of the inhibitor of NF-kappaB (IkappaB) by the UPS. ⋯ Here we found that administration of MG132 interferes with long-term memory but not with short-term memory, and no facilitatory effects were found. Then we studied the effect of the UPS inhibitor on NF-kappaB pathway, finding that MG132 blocks the activation of NF-kappaB induced by training. These results suggest that the UPS is necessary for long-term memory consolidation, allowing for the activation of NF-kappaB as one of the target molecular pathways.
-
In pre-clinical models intended to evaluate nociceptive processing, acute stress suppresses reflex responses to thermal stimulation, an effect previously described as stress-induced "analgesia." Suggestions that endogenous opioids mediate this effect are based on demonstrations that stress-induced hyporeflexia is enhanced by high dose morphine (>5 mg/kg) and is reversed by naloxone. However, reflexes and pain sensations can be modulated differentially. Therefore, in the present study direct comparisons were made of opioid agonist and antagonist actions, independently and in combination with acute restraint stress in Long Evans rats, on reflex lick-guard (L/G) and operant escape responses to nociceptive thermal stimulation (44.5 degrees C). ⋯ Thus, stress-induced hyperalgesia was opposed by endogenous opioid release and by administration of morphine. Stress-induced hyporeflexia was dependent upon endogenous opioid release but was counteracted by a moderate dose of morphine. These data demonstrate a differential modulation of reflex and operant outcome measures by stress and by separate or combined opioid antagonism or administration of morphine.
-
[N-(piperidin-1-yl)-5-(4-chlorophenyl)-4-methyl-1H-pyrazole-3-carboxyamide] (SR 141716A), a selective cannabinoid CB1 receptor antagonist, injected into the paraventricular nucleus of the hypothalamus (PVN) of male rats, induces penile erection. This effect is mediated by the release of glutamic acid, which in turn activates central oxytocinergic neurons mediating penile erection. Double immunofluorescence studies with selective antibodies against CB1 receptors, glutamic acid transporters (vesicular glutamate transporters 1 and 2 (VGlut1 and VGlut2), glutamic acid decarboxylase-67 (GAD67) and oxytocin itself, have shown that CB1 receptors in the PVN are located mainly in GABAergic terminals and fibers surrounding oxytocinergic cell bodies. ⋯ This increase occurs concomitantly with an almost twofold increase in the pro-erectile effect of SR 141716A injected into the PVN as compared with control rats. The present findings confirm that PVN CB1 receptors, localized mainly in GABAergic synapses that control in an inhibitory fashion excitatory synapses, exert an inhibitory control on penile erection, demonstrating for the first time that chronic blockade of CB1 receptors by SR 141716A increases the density of these receptors in the PVN. This increase is related to an enhanced pro-erectile effect of SR 141716A, which is still present 3 days after the end of the chronic treatment.
-
Similar to kappa-opioids, nociceptin/orphanin FQ (OFQ) exerts anti-mu-opioid actions. This may involve interactions within the circuitry controlling 5-HT neurons in the dorsal raphe nucleus (DRN) that project to the nucleus accumbens (NAcc). To test this hypothesis, we compared the effects of OFQ and kappa-opioids on 5-HT efflux in the CNS of freely behaving rats. ⋯ In contrast, OFQ (300-1000 microM) did not alter mu-opioid-induced increases in 5-HT efflux. In summary, kappa-opioids and OFQ both decreased 5-HT efflux in the CNS. However, in contrast to kappa-opioids, which reversed mu-opioid-induced increases in 5-HT efflux, the anti-mu-opioid effects of OFQ apparently do not involve changes in 5-HT transmission under our experimental conditions.