Neuroscience
-
Neuregulin-1 (NRG1) has been identified as a candidate susceptibility gene for schizophrenia. In the present study the functional role of the NRG1 gene, as it relates to cognitive and social processes known to be disrupted in schizophrenia, was assessed in mice with heterozygous deletion of transmembrane (TM)-domain NRG1 in comparison with wildtypes (WT). Social affiliative behavior was assessed using the sociability and preference for social novelty paradigm, in terms of time spent in: (i) a chamber containing an unfamiliar conspecific vs. an empty chamber (sociability), or (ii) a chamber containing an unfamiliar conspecific vs. a chamber containing a familiar conspecific (preference for social novelty). ⋯ This suggests that NRG1 mutants show a selective impairment in response to social novelty. While spatial learning and working memory processes appear intact, heterozygous deletion of TM-domain NRG1 was associated with disruption to social novelty behavior. These data inform at a novel phenotypic level on the functional role of this gene in the context of its association with risk for schizophrenia.
-
The regulation of fluid and electrolyte homeostasis involves the participation of several neuropeptides and hormones that utilize hypothalamic cholinergic, alpha-adrenergic and angiotensinergic neurotransmitters and pathways. Additionally, it has been suggested that hypothalamus-pituitary-adrenal axis activity modulates hormonal responses to blood volume expansion. In the present study, we evaluated the effect of dexamethasone on atrial natriuretic peptide (ANP), oxytocin (OT) and vasopressin (AVP) responses to i.c.v. microinjections of 0.15 M and 0.30 M NaCl, angiotensin-II (ANG-II) and carbachol. ⋯ Pre-treatment with dexamethasone induced a significant decrease in Fos immunoreactivity in these nuclei compared with the vehicle. These results indicate that central osmotic, cholinergic, and angiotensinergic stimuli activate MnPO, PVN and SON, with a subsequent OT, AVP, and ANP release. The present data also suggest that these responses are modulated by glucocorticoids.
-
Neuronal oscillations and population waves (OWs) may be important for the maturation of neural circuits in the cortex and other developing areas of the CNS. We examined endogenous network activity by whole-cell and paired extracellular recordings in the thalamorecipient auditory cortex (ACx) in slices of gerbil pups during the first three postnatal weeks. Separately, we examined network ensemble correlates of the OWs using population intracellular free calcium (Ca2+) imaging in slices bulk-loaded with fura-2 AM. ⋯ OWs were disrupted by treatment of slices with [Ca2+]i chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, the gap junction blocker mefloquine or the GABAA receptor blocker bicuculline. These results suggest that propagating activity involving calcium, gap junctions and GABAergic transmission exists in the gerbil ACx and it correlates with key developmental events in vivo. We speculate such activity may be integral to postnatal maturation of ACx.
-
The modifications in the hypothalamus-pituitary-adrenal (HPA) axis function induced by repeated unavoidable stress exposure, according to a standardized procedure used for inducing an experimental model of depression, were studied. Rats exposed to this procedure show hyporeactivity to both pleasurable and aversive stimuli and this condition is antagonized by the repeated administration of classical antidepressant drugs. We also studied whether imipramine administration during stress exposure would interfere with the possible modifications in the HPA axis. Rats were exposed to a 4-week stress procedure with and without imipramine treatment and then tested for escape, as compared with non-stressed control animals. Twenty-four hours later all rats were bled through a tail nick for plasma corticosterone measurement before and after dexamethasone (10 microg/kg) or corticotropin-releasing hormone (CRH, 1 microg/kg) administration. Rats were then killed, adrenals and thymus weighed, brain areas dissected out and frozen for glucocorticoid receptors (GRs) and corticotropin-releasing hormone receptor 1 (CRHR1) immunoblotting and for the assessment of hypothalamic corticotropin-releasing hormone levels. ⋯ Rats exposed to a 4-week unavoidable stress showed escape deficit and their basal plasma corticosterone levels were higher than those of control animals. Moreover, they had decreased response to dexamethasone administration, adrenal hypertrophy, and decreased GR expression in the hippocampus, hypothalamus, medial prefrontal cortex and pituitary. No significant modifications in CRHR1 expression were observed in the pituitary nor in different discrete brain areas. CRH levels in the hypothalamus and the plasma corticosterone response to CRH administration were found to be higher in stressed rats than in controls. Imipramine treatment offset all the behavioral and neurochemical stress-induced modifications. In conclusion, the present results strengthen the assumption that the escape/avoidance behavioral deficit induced by inescapable stress exposure is accompanied by steadily increased HPA activity, and that imipramine effect is strongly related to a normalization of HPA axis activity.
-
Phosphorylation of specific sites in the second intracellular loop and in the C-terminal domain have previously been suggested to cause desensitization and internalization of the mu-opioid receptor (MOP-R). To assess sites of MOP-R phosphorylation in vivo, affinity-purified, phosphoselective antibodies were raised against either phosphothreonine-180 in the second intracellular loop (MOR-P1) or the C-terminal domain of MOP-R containing phosphothreonine-370 and phosphoserine-375 (MOR-P2). We found that MOR-P2-immunoreactivity (IR) was significantly increased within the striatum of wild-type C57BL/6 mice after injection of the agonist fentanyl. ⋯ Mutant mice selectively lacking all forms of the beta-endorphin peptides derived from the proopiomelanocortin (Pomc) gene did not show increased MOR-P2-IR, decreased morphine antinociception, or reduced morphine CPP following pSNL. In contrast gene deletion of either proenkephalin or prodynorphin opioids did not block the effects of pSNL. These results suggest that neuropathic pain caused by pSNL in wild-type mice activates the release of the endogenous opioid beta-endorphin, which subsequently induces MOP-R phosphorylation and opiate tolerance.