Neuroscience
-
The calcium/calmodulin (CaM) kinase cascade regulates gene transcription, which is required for long-term memory formation. Previous studies with Camkk2 null mutant mice have shown that in males calcium/calmodulin kinase kinase beta (CaMKKbeta) is required for spatial memory formation and for activation of the transcription factor cyclic AMP-responsive element binding protein (CREB) in the hippocampus by spatial training. ⋯ Finally, a transcriptional analysis of male Camkk2 null mutants led to the identification of a gene, glycosyl phosphatidyl-inositol anchor attachment protein 1 (GAA1), whose hippocampal mRNA expression was up-regulated by spatial and contextual training in male but not in female wild-type mice. Taken together, we conclude that CaMKKbeta has a male-specific function in hippocampal memory formation and we have identified male-restricted transcription occurring during hippocampal memory formation.
-
A long-held assumption states that each dendritic spine in the cerebral cortex forms a synapse, although this issue has not been systematically investigated. We performed complete ultrastructural reconstructions of a large (n=144) population of identified spines in adult mouse neocortex finding that only 3.6% of the spines clearly lacked synapses. Nonsynaptic spines were small and had no clear head, resembling dendritic filopodia, and could represent a source of new synaptic connections in the adult cerebral cortex.
-
Deletion of transient receptor potential vanilloid type 1 (TRPV1)-expressing afferent neurons reduces presynaptic mu opioid receptors but paradoxically potentiates the analgesic efficacy of mu opioid agonists. In this study, we determined if removal of TRPV1-expressing afferent neurons by resiniferatoxin (RTX), an ultrapotent capsaicin analog, influences the development of opioid analgesic tolerance. Morphine tolerance was induced by daily intrathecal injections of 10 microg of morphine for 14 consecutive days or by daily i.p. injections of 10 mg/kg of morphine for 10 days. ⋯ Additionally, there was a large reduction in protein kinase Cgamma-immunoreactive afferent terminals in the spinal dorsal horn of RTX-treated rats. These findings suggest that loss of TRPV1-expressing sensory neurons attenuates the development of morphine analgesic tolerance possibly by reducing mu opioid receptor desensitization through protein kinase Cgamma in the spinal cord. These data also suggest that the function of presynaptic mu opioid receptors on TRPV1-expressing sensory neurons is particularly sensitive to down-regulation by mu opioid agonists during opioid tolerance development.
-
The loss of dopamine neurons combined or not with the subsequent administration of L-DOPA in patients with Parkinson's disease or in experimental models of the disease results in altered GABAergic signaling throughout the basal ganglia, including the striatum and the substantia nigra, pars reticulata. However, the molecular mechanisms involved in altered GABA neurotransmission remain poorly understood. In order to be released from synaptic vesicles, newly synthesized GABA is transported from the cytosol into synaptic vesicles by a vesicular GABA transporter. ⋯ Systemic L-DOPA also increased vGAT protein levels in the ipsi- and contralateral SNr. As a whole, the results provide original evidence that vGAT expression is altered in the 6-hydroxydopamine model of Parkinson's disease. They also suggest that the behavioral effects induced by a subchronic administration of L-DOPA to 6-hydroxydopamine-lesioned rats involve an increase in the vesicular release of GABA by striatonigral neurons.
-
Cocaine administration upregulates the levels of extracellular glutamate and dopamine in the striatum. Activation of the receptors alters calcium homeostasis in striatal neurons leading to the expression of the endoplasmic reticulum (ER) stress proteins. It was therefore hypothesized that cocaine upregulates the expression of the ER stress proteins, immunoglobulin heavy chain binding protein (BiP), Ire1alpha and perk via glutamate and dopamine receptor activation. ⋯ Intrastriatal injection (i.s.) of the selective group I metabotropic glutamate receptor (mGluR) antagonist N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC; 25 nmol) or the mGluR5 subtype antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP; 2 and 25 nmol) significantly decreased repeated cocaine-induced increases in the IR of the ER stress proteins in the injected dorsal striatum. Similarly, the selective D1 antagonist (R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390; 0.1 mg/kg, i.p.) or the N-methyl-d-aspartate antagonist dizocilpine/(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-ibenzo[a,d]cyclohepten-5,10-imine maleate (MK801; 2 nmol, i.s.) decreased acute or repeated cocaine-induced the IR of the ER stress proteins in the dorsal striatum. These data suggest that cocaine upregulates expression of the ER stress proteins in striatal neurons via a mechanism involving activation of glutamate and dopamine receptors.