Neuroscience
-
The role of hypothalamic ATP-sensitive potassium channels in the maintenance of energy homeostasis has been extensively explored. However, how these channels are incorporated into the neuronal networks of the arcuate nucleus remains unclear. Whole-cell patch-clamp recordings from rat arcuate nucleus neurons in hypothalamic slice preparations revealed widespread expression of functional ATP-sensitive potassium channels within the nucleus. ⋯ Thus, rat arcuate nucleus neurons, including those involved in functionally antagonistic orexigenic and anorexigenic pathways express functional ATP-sensitive potassium channels which include sulfonylurea receptor 1 subunits. These data indicate a crucial role for these ion channels in central sensing of metabolic and energy status. However, further studies are needed to clarify the differential roles of these channels, the organization of signaling pathways that regulate them and how they operate in functionally opposing cell types.
-
Nerve cell injury by unconjugated bilirubin (UCB) has been implicated in brain damage during neonatal hyperbilirubinemia, particularly in the preterm newborn. Recently, it was shown that UCB is a substrate for the multidrug resistance-associated protein 1 (Mrp1), an ATP-dependent efflux pump, which may decrease UCB intracellular levels. To obtain a further insight into the role of Mrp1 in the increased vulnerability of immature cells to UCB, we evaluated the mRNA and the protein levels of Mrp1 throughout differentiation in primary cultures of rat neurons and astrocytes. ⋯ The results are the first to demonstrate that Mrp1 is expressed in neurons and that both mRNA and protein levels of Mrp1 increase with cell differentiation. Additionally, inhibition of Mrp1 was associated with an increase in UCB toxic effects, namely cell death, cell dysfunction, and secretion of interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, as well as of glutamate. These results point to a novel role of Mrp1 in the susceptibility of premature babies to UCB encephalopathy, and provide a startup point for the development of a new therapeutic strategy.
-
Vaccination with Abeta(1-42) and treatment with NCX-2216, a novel nitric oxide releasing flurbiprofen derivative, have each been shown separately to reduce amyloid deposition in transgenic mice and have been suggested as potential therapies for Alzheimer's disease. In the current study we treated doubly transgenic amyloid precursor protein and presenilin-1 (APP+PS1) mice with Abeta(1-42) vaccination, NCX-2216 or both drugs simultaneously for 9 months. We found that all treatments reduced amyloid deposition, both compact and diffuse, to the same extent while only vaccinated animals, with or without nonsteroidal anti-inflammatory drug (NSAID) treatment, showed increased microglial activation associated with the remaining amyloid deposits. ⋯ This is the first report showing that active immunization can result in increased vascular amyloid and microhemorrhage, as has been observed with passive immunization. Co-administration of an NSAID agent with Abeta vaccination does not substantially modify the effects of Abeta immunotherapy. The difference between these treatments with respect to vascular amyloid development may reflect the clearance-promoting actions of the vaccine as opposed to the production-modifying effects proposed for flurbiprofen.
-
Thiamine (vitamin B1) deficiency (TD) causes region selective neuronal loss in the brain; it has been used to model neurodegeneration that accompanies mild impairment of oxidative metabolism. The mechanisms for TD-induced neurodegeneration remain incompletely elucidated. Inhibition of protein glycosylation, perturbation of calcium homeostasis and reduction of disulfide bonds provoke the accumulation of unfolded proteins in the endoplasmic reticulum (ER), and cause ER stress. ⋯ Similar to the observation in vivo, TD up-regulated markers for ER stress. Treatment of a selective inhibitor of caspase-12 significantly alleviated amprolium-induced death of CGNs. Thus, ER stress may play a role in TD-induced brain damage.
-
Exercise and antidepressants used independently have been shown to increase hippocampal brain-derived neurotrophic factor (BDNF) and neurogenesis. Despite the fact that patients with depression are often prescribed both, the effects of the exercise and fluoxetine antidepressant treatment used in combination are unknown. Using C57Bl/10 female mice, BDNF protein, insulin-like growth factor 1 (IGF-1) protein and neurogenesis were measured in the hippocampus after 21 days of wheel running, 21 days of fluoxetine antidepressant therapy (daily i.p. injections of 5 mg/kg, 10 mg/kg or 25 mg/kg) and the combination of the two. ⋯ Furthermore, spinal cord cytogenesis decreased with fluoxetine treatment. The combined wheel running and fluoxetine groups did not show synergistic results. Thus, the hippocampus and the spinal cord respond in distinct ways to wheel running and fluoxetine, and a prior induction of BDNF, IGF-1 or cytogenesis is unlikely to be the mechanism for wheel running providing a margin of protection against SCI.