Neuroscience
-
Two cold-sensitive transient receptor potential (TRP) channels, TRPA1 and TRPM8, have been identified and considered interesting because of their possible roles in thermosensation, nociception and other functions. Recently, we have reported that the phosphorylation of extracellular signal-regulated protein kinase and p38 mitogen-activated protein kinase occurred in primary afferent neurons in response to noxious heat stimulation of the peripheral tissue, i.e. activity-dependent activation of extracellular signal-regulated protein kinase and p38 in dorsal root ganglion neurons. In the present study, we investigated the phosphorylation of extracellular signal-regulated protein kinase, p38, and c-Jun N-terminal kinase in the rat dorsal root ganglion by cold stimulation using immunohistochemistry. ⋯ We then performed double-labeling experiments for TRPA1 and TRPM8 mRNA and phosphorylation of mitogen-activated protein kinase. The majority of phosphorylated-extracellular signal-regulated protein kinase-positive neurons also expressed TRPM8 mRNA, whereas phosphorylated-p38 heavily colocalized with TRPA1 mRNA after noxious cold stimulation. Our data suggest that the noxious, but not innocuous, cold stimulation in vivo induced differential activation of extracellular signal-regulated protein kinase and p38 pathways in each subpopulation containing TRPA1 or TRPM8 in dorsal root ganglion.
-
Accumulating evidences suggest that neuroinflammation is involved in the progressive death of dopaminergic neurons in Parkinson's disease. Several studies have shown that intranigral injection of lipopolysaccharide induces inflammation in the substantia nigra leading to death of tyrosine hydroxylase-positive cells. To better understand how the inflammatory response gives rise to neurotoxicity we induced inflammation in substantia nigra by injecting lipopolysaccharide. ⋯ Co-injections of lipopolysaccharide with SB203580, a p38 MAP kinase inhibitor, reduced inducible nitric oxide synthase and caspase-11 mRNA expression, and also rescued dopaminergic neurons in substantia nigra. In summary, this is the first report to describe in vivo the temporal profile of the expression of these inflammatory mediators and proteins involved in dopaminergic neuronal death after intranigral injection of lipopolysaccharide. Moreover data strongly support that lipopolysaccharide-induced dopaminergic cellular death in substantia nigra could be mediated, at least in part, by the p38 signal pathway leading to activation of inducible nitric oxide synthase and caspase-11.
-
Comparative Study
Descending facilitation from the rostral ventromedial medulla maintains nerve injury-induced central sensitization.
Nerve injury can produce hypersensitivity to noxious and normally innocuous stimulation. Injury-induced central (i.e. spinal) sensitization is thought to arise from enhanced afferent input to the spinal cord and to be critical for expression of behavioral hypersensitivity. Descending facilitatory influences from the rostral ventromedial medulla have been suggested to also be critical for the maintenance, though not the initiation, of experimental neuropathic pain. ⋯ In contrast, nerve-injured animals pretreated with dermorphin-saporin showed enhanced behaviors and touch-evoked FOS expression in the spinal dorsal horn at day 3, but not days 5 and 10, post-spinal nerve ligation when compared with sham-operated controls. These results indicate the presence of nerve injury-induced behavioral hypersensitivity associated with nerve injury-induced central sensitization. Further, the results demonstrate the novel concept that once initiated, maintenance of nerve injury-induced central sensitization in the spinal dorsal horn requires descending pain facilitation mechanisms arising from the rostral ventromedial medulla.
-
The ability of exercise to benefit neuronal and cognitive plasticity is well recognized. This study reveals that the effects of exercise on brain neuronal and cognitive plasticity are in part modulated by a central source of insulin-like growth factor-I. Exercise selectively increased insulin-like growth factor-I expression without affecting insulin-like growth factor-II expression in the rat hippocampus. ⋯ A molecular analysis revealed that exercise significantly elevated proteins downstream to brain-derived neurotrophic factor activation important for synaptic function, i.e. synapsin I, and signal transduction cascades associated with memory processes, i.e. phosphorylated calcium/calmodulin protein kinase II and phosphorylated mitogen-activated protein kinase II. Blocking the insulin-like growth factor-I receptor abolished these exercise-induced increases. Our results illustrate a possible mechanism by which insulin-like growth factor-I interfaces with the brain-derived neurotrophic factor system to mediate exercise-induced synaptic and cognitive plasticity.
-
S100beta is a calcium-binding peptide produced mainly by astrocytes that exerts paracrine and autocrine effects on neurons and glia. We have previously shown that S100beta is markedly elevated at the mRNA level in the spinal cord following peripheral inflammation, intraplantar administration of complete Freund's adjuvant in the rat. The purpose of the present study was to further investigate the role of astrocytic S100beta in mediating behavioral hypersensitivity in rodent models of persistent pain. ⋯ S100beta genetically deficient mice displayed significantly increased tactile thresholds (reduced response to non-noxious stimuli) after nerve injury as compared with the wild type group. S100beta overexpressing mice displayed significantly decreased tactile threshold responses (enhanced response to non-noxious stimuli). Together, these results from both series of experiments using a peripheral nerve injury model in two different species implicate the involvement of glial-derived S100beta in the pathophysiology of neuropathic pain.